Advanced Search
Volume 41 Issue 11
Nov.  2019
Turn off MathJax
Article Contents
Aili ZHANG, Hao LIU, Lin WU, Lijie NIU, Cheng ZHANG, Xue CHEN, Ji WU. The Application of the G-matrix Modification Methods to the Imaging of the 1-D Synthetic Aperture Microwave Radiometer[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2632-2638. doi: 10.11999/JEIT181067
Citation: Aili ZHANG, Hao LIU, Lin WU, Lijie NIU, Cheng ZHANG, Xue CHEN, Ji WU. The Application of the G-matrix Modification Methods to the Imaging of the 1-D Synthetic Aperture Microwave Radiometer[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2632-2638. doi: 10.11999/JEIT181067

The Application of the G-matrix Modification Methods to the Imaging of the 1-D Synthetic Aperture Microwave Radiometer

doi: 10.11999/JEIT181067
Funds:  The National Natural Science Foundation of China (41675035), Beijing Science and Technology Plan (Z161100002616033)
  • Received Date: 2018-11-22
  • Rev Recd Date: 2019-03-11
  • Available Online: 2019-04-12
  • Publish Date: 2019-11-01
  • The G -matrix model method is usually used to achieve the brightness temperature reconstruction for the one-Dimensional (1-D) synthetic aperture microwave radiometer system. For the 1-D radiometer system, the imaging process mainly includes: the radiometer instrument observes the full field of view of the 2-D target scene maps, and obtains the 1-D samples of the visibility, and then inverts the system parameter matrix G to realize the reconstruction of the 1-D image of the target scene. Since the system sampling baselines are only distributed in the 1-D of the spatial frequency domain, in the process of the brightness temperature image reconstruction, the matrix G needs to realize 2-D to 1-D conversion. Therefore, two G -matrix modification methods are proposed to improve the imaging quality for the 1-D synthetic aperture microwave radiometer. For the 8-element ground radiometer prototype system and the 10-element salinity radiometer system, theoretical analysis and simulation experiments have verified that the G -matrix modification methods proposed in this paper can effectively improve the imaging results, and can effectively suppress the imaging error caused by the side-lobed degradation of the antenna patterns.
  • loading
  • CORBELLA I, TORRES F, DUFFO N, et al. MIRAS calibration and performance: Results from the SMOS in-orbit commissioning phase[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3147–3155. doi: 10.1109/TGRS.2010.2102769
    MARTÍN-NEIRA M, OLIVA R, CORBELLA I, et al. SMOS instrument performance and calibration after six years in orbit[J]. Remote Sensing of Environment, 2016, 180: 19–39. doi: 10.1016/j.rse.2016.02.036
    LE VINE D M, LAGERLOEF G S E, COLOMB F R, et al. Aquarius: An instrument to monitor sea surface salinity from space[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(7): 2040–2050. doi: 10.1109/TGRS.2007.898092
    MCNAIRN H, JACKSON T J, WISEMAN G, et al. The soil moisture active passive validation experiment 2012(SMAPVEX12): Prelaunch calibration and validation of the SMAP soil moisture algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2784–2801. doi: 10.1109/TGRS.2014.2364913
    PIEPMEIER J R, FOCARDI P, HORGAN K A, et al. SMAP l-band microwave radiometer: Instrument design and first year on orbit[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4): 1954–1966. doi: 10.1109/TGRS.2016.2631978
    NIU Lijie, LIU Hao, WU Lin, et al. Experimental study of an L-band synthetic aperture radiometer for ocean salinity measurement[C]. Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 418–421. doi: 10.1109/IGARSS.2016.7729103.
    牛立杰, 刘浩, 吴季. 高灵敏度、高稳定度微波辐射计技术研究与实验验证[J]. 电子与信息学报, 2017, 39(8): 2028–2032. doi: 10.11999/JEIT161112

    NIU Lijie, LIU Hao, and WU Ji. Research and experimental verification on high sensitivity and high stability microwave radiometer[J]. Journal of Electronics &Information Technology, 2017, 39(8): 2028–2032. doi: 10.11999/JEIT161112
    LIU Hao, NIU Lijie, ZHANG Cheng, et al. System study and development of an L-band 1-D synthetic aperture radiometer for ocean salinity measurement[C]. Proceedings of 2013 IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 2013: 1916–1919. doi: 10.1109/IGARSS.2013.6723179.
    TANNER A B and SWIFT C T. Calibration of a synthetic aperture radiometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31(1): 257–267. doi: 10.1109/36.210465
    CORBELLA I, TORRES F, CAMPS A, et al. Brightness-temperature retrieval methods in synthetic aperture radiometers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1): 285–294. doi: 10.1109/TGRS.2008.2002911
    RUF C S, SWIFT C T, TANNER A B, et al. Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(5): 597–611. doi: 10.1109/36.7685
    LE VINE D M, GRIFFIS A J, SWIFT C T, et al. ESTAR: A synthetic aperture microwave radiometer for remote sensing applications[J]. Proceedings of the IEEE, 1994, 82(12): 1787–1801. doi: 10.1109/5.338071
    CORBELLA I, CAMPS A, TORRES F, et al. Analysis of noise-injection networks for interferometric-radiometer calibration[J]. IEEE Transactions on Microwave Theory and Techniques, 2000, 48(4): 545–552. doi: 10.1109/22.842026
    张成. 干涉式成像微波辐射计遥感图像的模拟与成像分析[D].[博士论文], 中国科学院研究生院(空间科学与应用研究中心), 2007.

    ZHANG Cheng. Radiometric image simulation and imaging analysis for synthetic aperture interferometric radiometer[D].[Ph.D. dissertation], Graduate School of Chinese Academy of Sciences (Center for Space Science and Applied Research), 2007.
    杨晓城, 阎敬业, 吴季. 解析矩阵法在全极化综合孔径辐射计中的应用[J]. 电波科学学报, 2013, 28(6): 1201–1205.

    YANG Xiaocheng, YAN Jingye, and WU Ji. Application of a resolving matrix approach in full polarization interferometric radiometer[J]. Chinese Journal of Radio Science, 2013, 28(6): 1201–1205.
    金梦彤, 刘浩, 武林, 等. 星载一维综合孔径微波辐射计海洋盐度探测任务仿真及外部误差源分析[J]. 遥感技术与应用, 2017, 32(2): 346–355.

    JIN Mengtong, LIU Hao, WU Lin, et al. Task simulation and external error sources analysis for an ocean salinity mission with one-dimensional synthetic aperture microwave radiometer[J]. Remote Sensing Technology and Application, 2017, 32(2): 346–355.
    DURAN I, WU Lin, CORBELLA I, et al. SMOS floor error impact and migation on ocean imaging[C]. Proceedings of 2015 IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 2015: 1437–1440. doi: 10.1109/IGARSS.2015.7326048.
    LE VINE D M, DINNAT E P, ABRAHAM S, et al. The Aquarius simulator and cold-sky calibration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3198–3120. doi: 10.1109/TGRS.2011.2161481
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (2366) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return