Citation: | Hongchang CHEN, Tian XIE, Chao GAO, Shaomei LI, Ruiyang HUANG. Candidate Label-Aware Partial Label Learning Algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2516-2524. doi: 10.11999/JEIT181059 |
HÜLLERMEIER E and BERINGER J. Learning from ambiguously labeled examples[J]. Intelligent Data Analysis, 2006, 10(5): 419–439. doi: 10.3233/IDA-2006-10503
|
SONG Jingqi, LIU Hui, GENG Fenghuan, et al. Weakly-supervised classification of pulmonary nodules based on shape characters[C]. The 14th International Conference on Dependable, Autonomic and Secure Computing, The 14th International Conference on Pervasive Intelligence and Computing, The 2nd International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress, Auckland, New Zealand, 2016: 228–232.
|
TANG Caizhi and ZHANG Minling. Confidence-rated discriminative partial label learning[C]. The 31st AAAI Conference on Artificial Intelligence, San Francisco, USA, 2017: 2611–2617.
|
TODA T, INOUE S, and UEDA N. Mobile activity recognition through training labels with inaccurate activity segments[C]. The 13th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, Hiroshima, Japan, 2016: 57–64.
|
YU Fei and ZHANG Minling. Maximum margin partial label learning[J]. Machine Learning, 2017, 106(4): 573–593. doi: 10.1007/s10994-016-5606-4
|
LUO Jie and ORABONA F. Learning from candidate labeling sets[C]. The 23rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2010: 1504–1512.
|
ZHANG Minling and YU Fei. Solving the partial label learning problem: An instance-based approach[C]. The 24th International Conference on Artificial Intelligence, Buenos Aires, Argentina, 2015: 4048–4054.
|
FENG Lei and AN Bo. Leveraging latent label distributions for partial label learning[C]. The Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 2018: 2107–2113.
|
COUR T, SAPP B, and TASKAR B. Learning from partial labels[J]. Journal of Machine Learning Research, 2011, 12: 1501–1536.
|
ZHOU Zhihua. A brief introduction to weakly supervised learning[J]. National Science Review, 2018, 5(1): 44–53. doi: 10.1093/nsr/nwx106
|
TOLDO R and FUSIELLO A. Robust multiple structures estimation with J-linkage[C]. The 10th European Conference on Computer Vision, Marseille, France, 2008: 537–547.
|
DUA D and TANISKIDOU E K. UCI machine learning repository[EB/OL]. http://archive.ics.uci.edu/ml, 2017.
|
ZENG Zinan, XIAO Shijie, JIA Kui, et al. Learning by associating ambiguously labeled images[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 708–715.
|
GUILLAUMIN M, VERBEEK J, and SCHMID C. Multiple instance metric learning from automatically labeled bags of faces[C]. The 11th European Conference on Computer Vision, Heraklion, Greece, 2010: 634–647.
|
ZHANG Minling, ZHOU Binbin, and LIU Xuying. Partial label learning via feature-aware disambiguation[C]. The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, 2016: 1335–1344.
|
BRIGGS F, FERN X Z, and RAICH R. Rank-loss support instance machines for MIML instance annotation[C]. The 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 2012: 534–542.
|
LIU Liping and DIETTERICH T G. A conditional multinomial mixture model for superset label learning[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 548–556.
|
ZHANG Minling, YU Fei, and TANG Caizhi. Disambiguation-free partial label learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(10): 2155–2167. doi: 10.1109/TKDE.2017.2721942
|
ZHANG Minling and YU Fei. Solving the partial label learning problem: An instance-based approach[C]. The 24th International Conference on Artificial Intelligence, Buenos Aires, Argentina, 2015: 4048–4054.
|