Advanced Search
Volume 41 Issue 11
Nov.  2019
Turn off MathJax
Article Contents
Shuang LIANG, Wenlong HANG, Wei FENG, Xuejun LIU. Adaptive Knowledge Transfer Based on Classification-error Consensus Regularization[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2736-2743. doi: 10.11999/JEIT181054
Citation: Shuang LIANG, Wenlong HANG, Wei FENG, Xuejun LIU. Adaptive Knowledge Transfer Based on Classification-error Consensus Regularization[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2736-2743. doi: 10.11999/JEIT181054

Adaptive Knowledge Transfer Based on Classification-error Consensus Regularization

doi: 10.11999/JEIT181054
Funds:  The National Nature Science Foundation of China (61802177), The Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (18KJB520020), NUPTSF (NY219034), Key Research and Development Program of Jiangsu Province (BE2015697)
  • Received Date: 2018-11-20
  • Rev Recd Date: 2019-04-30
  • Available Online: 2019-05-16
  • Publish Date: 2019-11-01
  • Most current transfer learning methods are modeled by utilizing the source data with the assumption that all data in the source domain are equally related to the target domain. In many practical applications, however, this assumption may induce negative learning effect when it becomes invalid. To tackle this issue, by minimizing the integrated squared error of the probability distribution of the source and target domain classification errors, the Classification-error Consensus Regularization (CCR) is proposed. Furthermore, CCR-based Adaptive knowledge Transfer Learning (CATL) method is developed to quickly determine the correlative source data and the corresponding weights. The proposed method can alleviate the negative transfer learning effect while improving the efficiency of knowledge transfer. The experimental results on the real image and text datasets validate the advantages of the CATL method.
  • loading
  • DENG Zhaohong, JIANG Yizhang, CHOI K S, et al. Knowledge-leverage-based TSK fuzzy system modeling[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(8): 1200–1212. doi: 10.1109/TNNLS.2013.2253617
    DAI Wenyuan, YANG Qiang, XUE Guirong, et al. Boosting for transfer learning[C]. The 24th International Conference on Machine Learning, Corvalis, USA, 2007: 193–200.
    JIANG Yizhang, DENG Zhaohong, CHUNG F L, et al. Recognition of epileptic EEG signals using a novel multiview TSK fuzzy system[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(1): 3–20. doi: 10.1109/TFUZZ.2016.2637405
    ZHUANG Fuzhen, LUO Ping, DU Changying, et al. Triplex transfer learning: Exploiting both shared and distinct concepts for text classification[J]. IEEE Transactions on Cybernetics, 2014, 44(7): 1191–1203. doi: 10.1109/TCYB.2013.2281451
    PAN S J, NI Xiaochuan, SUN Jiantao, et al. Cross-domain sentiment classification via spectral feature alignment[C]. Proceedings of the 19th International Conference on World Wide Web, Raleigh, USA, 2010: 751–760.
    ZANG Shaofei, CHENG Yuhu, WANG Xuesong, et al. Semi-supervised transfer discriminant analysis based on cross-domain mean constraint[J]. Artificial Intelligence Review, 2018, 49(4): 581–595. doi: 10.1007/s10462-016-9533-3
    WANG Guanjin, ZHANG Guangquan, CHOI K S, et al. Deep additive least squares support vector machines for classification with model transfer[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(7): 1527–1540. doi: 10.1109/TSMC.2017.2759090
    YANG Jun, YAN Rong, and HAUPTMANN A G. Adapting SVM classifiers to data with shifted distributions[C]. The Seventh IEEE International Conference on Data Mining Workshops, Omaha, USA, 2007: 69–76.
    JIANG Yizhang, DENG Zhaohong, CHUNG F L, et al. Realizing two-view TSK fuzzy classification system by using collaborative learning[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(1): 145–160. doi: 10.1109/TSMC.2016.2577558
    CHU Wensheng, DE LA TORRE F, and COHN J F. Selective transfer machine for personalized facial action unit detection[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 3515–3522.
    GRETTON A, SMOLA A, HUANG Jiayuan, et al. Covariate Shift by Kernel Mean Matching[M]. QUIÑONERO-CANDELA J, SUGIYAMA M, SCHWAIGHOFER A, et al. Dataset Shift in Machine Learning. Cambridge, USA: MIT Press, 2009: 131–160.
    CHENG Yuhu, WANG Xuesong, and CAO Ge. Multi-source tri-training transfer learning[J]. IEICE Transactions on Information and Systems, 2014, E97-D(6): 1668–1672. doi: 10.1587/transinf.e97.d.1668
    WANG Yunyun, ZHAI Jie, LI Yun, et al. Transfer learning with partial related " instance-feature” knowledge[J]. Neurocomputing, 2018, 310: 115–124. doi: 10.1016/j.neucom.2018.05.029
    CHEN Minmin, XU Zhixiang, WEINBERGER K Q, et al. Marginalized denoising autoencoders for domain adaptation[C]. The 29th International Conference on Machine Learning, Edinburgh, Scotland, 2012: 1627–1634.
    ZHOU J T, PAN S J, TSANG I W, et al. Hybrid heterogeneous transfer learning through deep learning[C]. The 28th AAAI Conference on Artificial Intelligence, Québec City, Canada, 2014: 2213–2219.
    GLOROT X, BORDES A, and BENGIO Y. Domain adaptation for large-scale sentiment classification: A deep learning approach[C]. The 28th International Conference on Machine Learning, Bellevue, Washington, USA, 2011: 513–520.
    LONG Mingsheng, WANG Jianmin, CAO Yue, et al. Deep learning of transferable representation for scalable domain adaptation[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(8): 2027–2040. doi: 10.1109/TKDE.2016.2554549
    PARZEN E. On estimation of a probability density function and mode[J]. The Annals of Mathematical Statistics, 1962, 33(3): 1065–1076. doi: 10.1214/aoms/1177704472
    DENG Zhaohong, CHUNG F L, and WANG Shitong. FRSDE: Fast reduced set density estimator using minimal enclosing ball approximation[J]. Pattern Recognition, 2008, 41(4): 1363–1372. doi: 10.1016/j.patcog.2007.09.013
    TOMMASI T, ORABONA F, and CAPUTO B. Learning categories from few examples with multi model knowledge transfer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(5): 928–941. doi: 10.1109/TPAMI.2013.197
    LACOSTE-JULIEN S, SCHMIDT M, and BACH F. A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method[J]. arXiv:1212.2002, 2012.
    LONG Mingsheng, WANG Jianmin, DING Guiguang, et al. Transfer learning with graph co-regularization[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(7): 1805–1818. doi: 10.1109/TKDE.2013.97
    SUYKENS J A K and VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293–300. doi: 10.1023/a:1018628609742
    BART E and ULLMAN S. Cross-generalization: Learning novel classes from a single example by feature replacement[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 672–679.
    GU Xiaoqing, CHUNG F L, and WANG Shitong. Bayesian Takagi-Sugeno-Kang fuzzy classifier[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(6): 1655–1671. doi: 10.1109/TFUZZ.2016.2617377
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(3)

    Article Metrics

    Article views (2517) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return