Advanced Search
Volume 41 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
Guowen ZHANG, Jun GAO, Xiangyu CAO, Huanhuan YANG, Sijia LI. Design of A Novel Broadband Low RCS Array Based on Three Types of Reflective Cell Shared Aperture[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2925-2931. doi: 10.11999/JEIT181049
Citation: Guowen ZHANG, Jun GAO, Xiangyu CAO, Huanhuan YANG, Sijia LI. Design of A Novel Broadband Low RCS Array Based on Three Types of Reflective Cell Shared Aperture[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2925-2931. doi: 10.11999/JEIT181049

Design of A Novel Broadband Low RCS Array Based on Three Types of Reflective Cell Shared Aperture

doi: 10.11999/JEIT181049
Funds:  The Postdoctoral Innovative Talents Support Program of China(BX20180375), The National Natural Science Foundation of China (61471389, 61671464, 61701523)
  • Received Date: 2018-11-16
  • Rev Recd Date: 2019-03-18
  • Available Online: 2019-05-20
  • Publish Date: 2019-12-01
  • A novel wideband low RCS new super-surface array based on three reflective cell shared aperture is designed, which is composed of three kinds of Artificial Magnetic Conductor (AMC). Compared with the traditional AMC array, the new array uses one of AMC as phasor interference unit. A new phase cancellation relation is presented, the new phase cancellation relation is used to extend the traditional array phase cancellation band. Then, the parameters of the cell structure are further optimized to realize the reduction of RCS and the improvement of bandwidth. The physical sample is processed and tested. The results of simulation and field test show that: the backward reduction of RCS in the range of 5.2~13.9 GHz reaches more than 10 dB, and the relative bandwidth reaches 91%. It is shown that the new array can overcome the defect of the discontinuous operating band of the traditional array and has broadband low scattering characteristics.
  • loading
  • PENDRY J B, SCHURIG D, and SMITH D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780–1782. doi: 10.1126/science.1125907
    LING Baoqing, ZHAO Shanghong, WEI Wei, et al. Design of a tunable frequency selective surface absorber as a loaded receiving antenna array[J]. Chinese Physics B, 2014, 23(2): 024201. doi: 10.1088/1674-1056/23/2/024201
    ESMAELI S H and SEDIGHY S H. Wideband radar cross-section reduction by AMC[J]. Electronics Letters, 2016, 52(1): 70–71. doi: 10.1049/el.2015.3515
    ZHAO Yi, CAO Xiangyu, GAO Jun, et al. Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm[J]. Scientific Reports, 2016, 6: 23896. doi: 10.1038/srep23896
    LI Sijia, GAO Jun, CAO Xiangyu, et al. Multiband and broadband polarization -insensitive perfect absorber devices based on a tunable and thin double split-ring metamaterial[J]. Optics Express, 2015, 23(3): 3523–3533. doi: 10.1364/OE.23.003523
    KANG Xiaole, SU Jianxun, ZHANG Hui, et al. Ultra-wideband RCS reduction of microstrip antenna array by optimised multi-element metasurface[J]. Electronics Letters, 2017, 53(8): 520–522. doi: 10.1049/el.2017.0260
    HYUNG S J, DETOMA A S, BRENDER J R, et al. Insights into antiamyloidogenic properties of the green tea extract (−)-epigallocatechin-3-gallate toward metal-associated amyloid-β species[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(10): 3743–3748. doi: 10.1073/pnas.1220326110
    YEPES C, CAVALLO D, GANDINI E, et al. Angularly stable frequency selective surface combined with a wide-scan phased array[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(2): 1046–1051. doi: 10.1109/TAP.2017.2778768
    LIU Ying, HAO Yuwen, LI Kun, et al. Wideband and polarization-independent radar cross section reduction using holographic metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1028–1031. doi: 10.1109/LAWP.2015.2490241
    LIU Ying, LI Kun, JIA Yongtao, et al. Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(1): 326–331. doi: 10.1109/TAP.2015.2497352
    SIMMS S and FUSCO V. Tunable thin radar absorber using artificial magnetic ground plane with variable backplane[J]. Electronics Letters, 2006, 42(21): 1197–1198. doi: 10.1049/el:20061989
    COSTA F, MONORCHIO A, and MANARA G. Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(5): 1551–1558. doi: 10.1109/TAP.2010.2044329
    PAQUAY M, IRIARTE J C, EDERRA I, et al. Thin AMC structure for radar cross-section reduction[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(12): 3630–3638. doi: 10.1109/TAP.2007.910306
    ESMAELI S H and SEDIGHY S H. SLL reduction of slot array antenna by artificial magnetic conductor side walls[J]. Electronics Letters, 2016, 52(18): 1513–1514. doi: 10.1049/el.2016.2430
    ZHENG Yuejun, GAO Jun, XU Liming, et al. Ultrawideband and polarization-independent radar-cross-sectional reduction with composite artificial magnetic conductor surface[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1651–1654. doi: 10.1109/LAWP.2017.2660878
    MODI A Y, BALANIS C A, BIRTCHER C R, et al. Novel design of ultrabroadband radar cross section reduction surfaces using artificial magnetic conductors[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(10): 54065417.
    LI Youquan, ZHANG Hui, FU Yunqi, et al. RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material[J]. IEEE Antennas and Wireless Propagation Letters, 2008, 7: 473–476. doi: 10.1109/LAWP.2008.2001548
    XUE Jingjing, JIANG Wen, and GONG Shuxi. Wideband RCS reduction of slot-coupled patch antenna by AMC structure[J]. Electronics Letters, 2017, 53(22): 1454–1456. doi: 10.1049/el.2017.2587
    LI Sijia, GAO Jun, CAO Xiangyu, et al. Polarization-insensitive and thin stereo -metamaterial with broadband angular absorption for the oblique incidence[J]. Applied Physics A, 2015, 119(1): 371–378. doi: 10.117/s00339-014-8978-y
    杨欢欢, 杨帆, 许慎恒, 等. Ku波段编码式电控超薄周期单元设计与验证[J]. 物理学报, 2016, 65(5): 054102.

    YANG Huanhuan, YANG Fan, XU Shenheng, et al. Design and verification of an electronically controllable ultrathin coding periodic element in Ku band[J]. Acta Physica Sinica, 2016, 65(5): 054102.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (2236) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return