Advanced Search
Volume 41 Issue 9
Sep.  2019
Turn off MathJax
Article Contents
Zhiqiang HOU, Lilin CHEN, Wangsheng YU, Sugang MA, Jiulun FAN. Robust Visual Tracking Algorithm Based on Siamese Network with Dual Templates[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2247-2255. doi: 10.11999/JEIT181018
Citation: Zhiqiang HOU, Lilin CHEN, Wangsheng YU, Sugang MA, Jiulun FAN. Robust Visual Tracking Algorithm Based on Siamese Network with Dual Templates[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2247-2255. doi: 10.11999/JEIT181018

Robust Visual Tracking Algorithm Based on Siamese Network with Dual Templates

doi: 10.11999/JEIT181018
Funds:  The National Natural Science Foundation of China (61473309, 61703423)
  • Received Date: 2018-11-06
  • Rev Recd Date: 2019-05-29
  • Available Online: 2019-06-12
  • Publish Date: 2019-09-10
  • In recent years, the Siamese networks has drawn great attention in visual tracking community due to its balanced accuracy and speed. However, most Siamese networks model are not updated, which causes tracking errors. In view of this deficiency, an algorithm based on the Siamese network with double templates is proposed. First, the base template R which is the initial frame target with stable response map score and the dynamic template T which is using the improved APCEs model update strategy to determine are kept. Then, the candidate targets region and the two template matching results are analyzed, meanwhile the result response maps are fused, which could ensure more accurate tracking results. The experimental results on the OTB2013 and OTB2015 datasets show that comparing with the 5 current mainstream tracking algorithms, the tracking accuracy and success rate of the proposed algorithm are superior. The proposed algorithm not only displays better tracking effects under the conditions of scale variation, in-plane rotation, out-of-plane rotation, occlusion, and illumination variation, but also achieves real-time tracking by a speed of 46 frames per second.
  • loading
  • 侯志强, 韩崇昭. 视觉跟踪技术综述[J]. 自动化学报, 2006, 32(4): 603–617.

    HOU Zhiqiang and HAN Chongzhao. A survey of visual tracking[J]. Acta Automatica Sinica, 2006, 32(4): 603–617.
    WU Yi, LIM J, and YANG M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834–1848. doi: 10.1109/TPAMI.2014.2388226
    HE Anfeng, LUO Chong, TIAN Xinmei, et al. A twofold Siamese network for real-time object tracking[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4834–4843.
    TAO Ran, GAVVES E, and SMEULDERS A W M. Siamese instance search for tracking[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1420–1429.
    BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional Siamese networks for object tracking[C]. 2016 European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 850–865.
    WANG Qiang, TENG Zhu, XING Junliang, et al. Learning attentions: Residual attentional Siamese network for high performance online visual tracking[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4854–4863.
    ZHU Zheng, WU Wei, ZOU Wei, et al. End-to-end flow correlation tracking with spatial-temporal attention[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 548–557.
    VALMADRE J, BERTINETTO L, HENRIQUES J, et al. End-to-end representation learning for correlation filter based tracking[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 5000–5008.
    GUO Qing, FENG Wei, ZHOU Ce, et al. Learning dynamic Siamese network for visual object tracking[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 1781–1789.
    WANG Qiang, ZHANG Mengdan, XING Junliang, et al. Do not lose the details: Reinforced representation learning for high performance visual tracking[C]. 2018 International Joint Conferences on Artificial Intelligence, Stockholm, Swedish, 2018.
    LI Bo, YAN Junjie, WU Wei, et al. High performance visual tracking with Siamese region proposal network[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8971–8980.
    ZHU Zheng, WANG Qiang, LI Bo, et al. Distractor-aware Siamese networks for visual object tracking[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 103–119.
    RUSSAKOVSKY O, DENG Jia, SU Hao, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211–252. doi: 10.1007/s11263-015-0816-y
    REAL E, SHLENS J, MAZZOCCHI S, et al. YouTube-boundingboxes: A large high-precision human-annotated data set for object detection in video[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 7464–7473.
    HERMANS A, BEYER L, and LEIBE B. In defense of the triplet loss for person re-identification[EB/OL]. https://arxiv.org/abs/1703.07737, 2017.
    WU Yi, LIM J, and YANG M H. Online object tracking: A benchmark[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 2411–2418.
    KRISTAN M, MATAS J, LEONARDIS A, et al. The visual object tracking VOT2015 challenge results[J]. 2015 IEEE International Conference on Computer Vision Workshop, Santiago, Chile, 2015: 564–586.
    SMEULDERS A W M, CHU D M, CUCCHIARA R, et al. Visual tracking: An experimental survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1442–1468. doi: 10.1109/TPAMI.2013.230
    WANG Mengmeng, LIU Yong, and HUANG Zeyi. Large margin object tracking with circulant feature maps[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4800–4808.
    ZHANG Jianming, MA Shugao, and SCLAROFF S. MEEM: Robust tracking via multiple experts using entropy minimization[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 188–203.
    BERTINETTO L, VALMADRE J, GOLODETZ S, et al. Staple: Complementary learners for real-time tracking[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1401–1409.
    DANELLJAN M, HÄGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 4310–4318. doi: 10.1109/ICCV.2015.490.
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386
    LI Bo, WU Wei, WANG Qiang, et al. SiamRPN++: Evolution of Siamese visual tracking with very deep networks[EB/OL]. https://arxiv.org/pdf/1812.11703.pdf, 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article Metrics

    Article views (3861) PDF downloads(102) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return