Citation: | Guang KOU, Shuo WANG, Da ZHANG. Recognition of Network Security Situation Elements Based on Depth Stack Encoder and Back Propagation Algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2187-2193. doi: 10.11999/JEIT181014 |
国家计算机网络应急技术处理协调中心. 2017年我国互联网网络安全态势综述[EB/OL]. http://www.cert.org.cn/publish/main/upload/File/situation.pdf, 2018.
National Internet Emergency Center. Summary of China’s Internet security situation in 2018[EB/OL]. http://www.cert.org.cn/publish/main/upload/File/situation.pdf, 2018.
|
SRIHARI R K. Situation awareness through concept-based information extraction[EB/OL]. http://www.dawnbreaker.com/vas05, 2015.
|
ZHANG Songmei, YAO Shan, YE Xin'en, et al. A network security situation analysis framework based on information fusion[C]. The 6th IEEE Joint International Information Technology and Artificial Intelligence Conference, Chongqing, China, 2011: 326-332. doi: 10.1109/ITAIC.2011.6030216.
|
韦勇, 连一峰, 冯登国. 基于信息融合的网络安全态势评估模型[J]. 计算机研究与发展, 2009, 46(3): 353–362.
WEI Yong, LIAN Yifeng, and FENG Dengguo. A network security situational awareness model based on information fusion[J]. Journal of Computer Research and Development, 2009, 46(3): 353–362.
|
陈秀真, 郑庆华, 管晓宏, 等. 层次化网络安全威胁态势量化评估方法[J]. 软件学报, 2006, 17(4): 885–897.
CHEN Xiuzhen, ZHENG Qinghua, GUAN Xiaohong, et al. Quantitative hierarchical threat evaluation model for network security[J]. Journal of Software, 2006, 17(4): 885–897.
|
LIU Zhiming, LI Sheng, HE Jin, et al. Complex network security analysis based on attack graph model[C]. The 2nd International Conference on Instrumentation, Measurement, Computer, Communication and Control, Harbin, China, 2012: 183–186. doi: 10.1109/IMCCC.2012.50.
|
HINTON G E, OSINDERO S, and TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527–1554. doi: 10.1162/neco.2006.18.7.1527
|
ERHAN D, BENGIO Y, COURVILLE A, et al. Why does unsupervised pre-training help deep learning?[J]. The Journal of Machine Learning Research, 2010, 11: 625–660.
|
BENGIO Y. Learning deep architectures for AI[J]. Foundations and Trends in Machine Learning, 2009, 2(1): 1–127. doi: 10.1561/2200000006
|
VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion[J]. The Journal of Machine Learning Research, 2010, 11: 3371–3408.
|
RIFAI S, VINCENT P, MULLER X, et al. Contractive auto-encoders: Explicit invariance during feature extraction[C]. The 28th International Conference on Machine Learning, New York, USA, 2011: 122-132.
|
EVANS R and GREFENSTETTE E. Learning explanatory rules from noisy data[J]. Journal of Artificial Intelligence Research, 2018, 61: 1–64. doi: 10.1613/jair.5714
|
BRONSTEIN M M, BRUNA J, LECUN Y, et al. Geometric deep learning: Going beyond Euclidean data[J]. IEEE Signal Processing Magazine, 2017, 34(4): 18–42. doi: 10.1109/MSP.2017.2693418
|
LIPPMANN R, HAINES J W, FRIED D J, et al. The 1999 DARPA off-line intrusion detection evaluation[J]. Computer Networks, 2000, 34(4): 579–595. doi: 10.1016/S1389-1286(00)00139-0
|
SHIRAVI A, SHIRAVI H, TAVALLAEE M, et al. Toward developing a systematic approach to generate benchmark datasets for intrusion detection[J]. Computers& Security, 2012, 31(3): 357–374. doi: 10.1016/j.cose.2011.12.012
|
KONIDARIS G, KAELBLING L P, and LOZANO-PEREZ T. From skills to symbols: Learning symbolic representations for abstract high-level planning[J]. Journal of Artificial Intelligence Research, 2018, 61: 215–289. doi: 10.1613/jair.5575
|