Advanced Search
Volume 42 Issue 2
Feb.  2020
Turn off MathJax
Article Contents
Yu WANG, Yunhe CAO, Chen QI, Jiusheng HAN, Yutao LIU. Multi-channel SAR-GMTI Clutter Suppression Method Based onHypersonic Platform Forward Squint[J]. Journal of Electronics & Information Technology, 2020, 42(2): 458-464. doi: 10.11999/JEIT181002
Citation: Yu WANG, Yunhe CAO, Chen QI, Jiusheng HAN, Yutao LIU. Multi-channel SAR-GMTI Clutter Suppression Method Based onHypersonic Platform Forward Squint[J]. Journal of Electronics & Information Technology, 2020, 42(2): 458-464. doi: 10.11999/JEIT181002

Multi-channel SAR-GMTI Clutter Suppression Method Based onHypersonic Platform Forward Squint

doi: 10.11999/JEIT181002
Funds:  The National Natural Science Foundation of China (61771367), The science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory Foundation (HHS19641X003)
  • Received Date: 2018-11-01
  • Rev Recd Date: 2019-04-20
  • Available Online: 2019-09-20
  • Publish Date: 2020-02-19
  • According to the HyperSonic Vehicle (HSV) borne radar platform system, a multi-channel SAR-GMTI clutter suppression method is presented based on hypersonic platform forward squint mode. First, range walk correction and range compression are completed in the time domain, and the distance envelope is aligned simultaneously with phase error compensation. Then, the Doppler extended signal is compressed by three-order azimuth Chirp Fourier Transform (CFT), and the azimuth envelope of the echo is aligned with phase error compensation simultaneously. Next, the Digital Beam Forming (DBF) technology is applied to the range time-azimuth CFT domain by nulling the clutter and its ambiguous components to achieve Space-Time Adaptive Processing (STAP). The stationary clutter and its ambiguous components can be suppressed effectively and the echo signs of the moving target without blurring can be extracted.

  • loading
  • WANG Wenqin. Near-space vehicle-borne SAR with reflector antenna for high-resolution and wide-swath remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 338–348. doi: 10.1109/TGRS.2011.2158224
    XU Gang, XING Mengdao, ZHANG Lei, et al. Robust autofocusing approach for highly squinted SAR imagery using the extended wavenumber algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(10): 5031–5046. doi: 10.1109/TGRS.2013.2276112
    XU Huajian, YANG Zhiwei, TIAN Min, et al. An extended moving target detection approach for high-resolution multichannel SAR-GMTI systems based on enhanced shadow-aided decision[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 715–729. doi: 10.1109/TGRS.2017.2754098
    WANG Yu, CAO Yunhe, PENG Zhigang, et al. Clutter suppression and GMTI for hypersonic vehicle borne SAR system with MIMO antenna[J]. IET Signal Processing, 2017, 11(8): 909–915. doi: 10.1049/iet-spr.2017.0193
    XU Jia, HUANG Zuzhen, WANG Zhirui, et al. Radial velocity retrieval for multichannel SAR moving targets with time-space Doppler deambiguity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1): 35–48. doi: 10.1109/TGRS.2017.2720692
    HUANG Yan, LIAO Guisheng, XU Jingwei, et al. GMTI and parameter estimation for MIMO SAR system via fast interferometry RPCA method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(3): 1774–1787. doi: 10.1109/TGRS.2017.2768243
    WANG Guanqiong, LI Jingwen, and WEI Yang. Influence factors analysis of SAR-GMTI system performance[J]. Applied Mechanics and Materials, 2013, 380-384: 692–696. doi: 10.4028/www.scientific.net/AMM.380-384.692
    YANG Taoli, WANG Yong, and LI Wei. A moving target imaging algorithm for HRWS SAR/GMTI systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1147–1157. doi: 10.1109/TAES.2017.2667858
    邢孟道, 孙光才, 李学仕. 用于高分辨率宽测绘带SAR系统的SAR/GMTI处理方法研究[J]. 雷达学报, 2015, 4(4): 375–385. doi: 10.12000/JR15096

    XING Mengdao, SUN Guangcai, and LI Xueshi. Study on SAR/GMTI processing for high-resolution wide-swath SAR system[J]. Journal of Radars, 2015, 4(4): 375–385. doi: 10.12000/JR15096
    吴明宇, 杨桃丽, 吴顺君, 等. 星载多通道高分辨率宽测绘带SAR系统运动目标检测方法[J]. 电子与信息学报, 2014, 36(2): 441–444. doi: 10.3724/SP.J.1146.2013.00465

    WU Mingyu, YANG Taoli, WU Shunjun, et al. Ground moving target indication for spaceborne multi-channel high resolution wide swath SAR system[J]. Journal of Electronics &Information Technology, 2014, 36(2): 441–444. doi: 10.3724/SP.J.1146.2013.00465
    XIA Xianggen. Discrete chirp-Fourier transform and its application to chirp rate estimation[J]. IEEE Transactions on Signal Processing, 2000, 48(11): 3122–3133. doi: 10.1109/78.875469
    XIA Meng and YANG Xiaoniu. Moving target parameter estimation of spaceborne SAR-GMTI based on the analysis of acceleration[C]. 2011 IEEE CIE International Conference on Radar, Chengdu, China, 2011: 1242–1246. doi: 10.1109/CIE-Radar.2011.6159781.
    SUWA K, YAMAMOTO K, TSUCHIDA M, et al. Image-based target detection and radial velocity estimation methods for multichannel SAR-GMTI[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(3): 1325–1338. doi: 10.1109/TGRS.2016.2622712
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (2894) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return