Advanced Search
Volume 41 Issue 11
Nov.  2019
Turn off MathJax
Article Contents
Weifeng SHI, Jinbao ZHUO, Ying LAN. A Novel Fuzzy Clustering Algorithm Based on Similarity of Attribute Space[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2722-2728. doi: 10.11999/JEIT180974
Citation: Weifeng SHI, Jinbao ZHUO, Ying LAN. A Novel Fuzzy Clustering Algorithm Based on Similarity of Attribute Space[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2722-2728. doi: 10.11999/JEIT180974

A Novel Fuzzy Clustering Algorithm Based on Similarity of Attribute Space

doi: 10.11999/JEIT180974
Funds:  The National Natural Science Foundation of China (61503240), Shanghai Maritime University Graduate Student Innovation Fund Project (2016ycx078)
  • Received Date: 2018-10-17
  • Rev Recd Date: 2019-02-28
  • Available Online: 2019-04-25
  • Publish Date: 2019-11-01
  • With the attribute feature information of the fuzzy membership matrix and cluster centers after the iteration not fully utilized, the results of Fuzzy C-Means (FCM) Clustering and related modified algorithms are determined based on the principle of maximum fuzzy membership, causing bad influence on the clustering accuracy. To solve this problem, the improvement ideas are proposed: to improve classification principle of FCM. The formula definition of attribute similarity in binary topological subspaces is given. Then, the improved FCM algorithm based on the Similarity of Attribute Space (FCM-SAS) is proposed: First, samples with fuzzy membership degree lower than the clustering reliability are selected as suspicious samples. Next, the attribute similarity between the suspicious samples and the cluster centers after clustering are calculated. Finally, cluster labels of suspicious samples based on the principle of maximum attribute similarity are updated. The validity and superiority of the proposed algorithm is verified by the UCI sample set experiments and comparisons with other modified algorithms based on the principle of maximum fuzzy membership.
  • loading
  • BEZDEK J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. Boston: Springer, 1981: 155–201.
    FRIGUI H and KRISHNAPURAM R. A robust competitive clustering algorithm with applications in computer vision[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(5): 450–465. doi: 10.1109/34.765656
    YANG M and NATALIANI Y. Robust-learning fuzzy C-means clustering algorithm with unknown number of clusters[J]. Pattern Recognition, 2017, 71: 45–59. doi: 10.1016/j.patcog.2017.05.017
    SON L H and TIEN N D. Tune up fuzzy C-means for big data: Some novel hybrid clustering algorithms based on initial selection and incremental clustering[J]. International Journal of Fuzzy Systems, 2017, 19(5): 1585–1602. doi: 10.1007/s40815-016-0260-3
    HUANG Chengquan, CHUNG F, and WANG Shitong. Generalized competitive agglomeration clustering algorithm[J]. International Journal of Machine Learning and Cybernetics, 2017, 8(6): 1945–1969. doi: 10.1007/s13042-016-0572-5
    SINGH C and BALA A. A DCT-based local and non-local fuzzy C-means algorithm for segmentation of brain magnetic resonance images[J]. Applied Soft Computing, 2018, 68: 447–457. doi: 10.1016/j.asoc.2018.03.054
    SAHA A and DAS S. Geometric divergence based fuzzy clustering with strong resilience to noise features[J]. Pattern Recognition Letters, 2016, 79: 60–67. doi: 10.1016/j.patrec.2016.04.013
    肖满生, 肖哲, 文志诚, 等. 一种空间相关性与隶属度平滑的FCM改进算法[J]. 电子与信息学报, 2017, 39(5): 1123–1129. doi: 10.11999/JEIT160710

    XIAO Mansheng, XIAO Zhe, WEN Zhicheng, et al. Improved fcm clustering algorithm based on spatial correlation and membership smoothing[J]. Journal of Electronics &Information Technology, 2017, 39(5): 1123–1129. doi: 10.11999/JEIT160710
    WANG Xizhao, WANG Yadong, and WANG Lijuan. Improving fuzzy C-means clustering based on feature-weight learning[J]. Pattern Recognition Letters, 2004, 25(10): 1123–1132. doi: 10.1016/j.patrec.2004.03.008
    YANG M S and NATALIANI Y. A feature-reduction fuzzy clustering algorithm based on feature-weighted entropy[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(2): 817–835. doi: 10.1109/TFUZZ.2017.2692203
    KUO R J, LIN T C, ZULVIA F E, et al. A hybrid metaheuristic and kernel intuitionistic fuzzy c-means algorithm for cluster analysis[J]. Applied Soft Computing, 2018, 67: 299–308. doi: 10.1016/j.asoc.2018.02.039
    JIANG Zhaohui, LI Tingting, MIN Wengfang, et al. Fuzzy c-means clustering based on weights and gene expression programming[J]. Pattern Recognition Letters, 2017, 90: 1–7. doi: 10.1016/j.patrec.2017.02.015
    JIE Lilin, LIU Weidong, SUN Zheng, et al. Hybrid fuzzy clustering methods based on improved self-adaptive cellular genetic algorithm and optimal-selection-based fuzzy c-means[J]. Neurocomputing, 2017, 249: 140–156. doi: 10.1016/j.neucom.2017.03.068
    KIM E H, OH S K, and PEDRYCZ W. Reinforced hybrid interval fuzzy neural networks architecture: Design and analysis[J]. Neurocomputing, 2018, 303: 20–36. doi: 10.1016/j.neucom.2018.04.003
    DAGHER I. Fuzzy clustering using multiple Gaussian kernels with optimized-parameters[J]. Fuzzy Optimization and Decision Making, 2018, 17(2): 159–176. doi: 10.1007/s10700-017-9268-x
    王骏, 刘欢, 蒋亦樟, 等. 堆叠隐空间模糊C均值聚类算法[J]. 控制与决策, 2016, 31(9): 1671–1677. doi: 10.13195/j.kzyjc.2015.0768

    WANG Jun, LIU Huan, JIANG Yizhang, et al. Cascaded hidden space fuzzy C means clustering algorithm[J]. Control and Decision, 2016, 31(9): 1671–1677. doi: 10.13195/j.kzyjc.2015.0768
    LUO Xiong, XU Yang, WANG Weiping, et al. Towards enhancing stacked extreme learning machine with sparse autoencoder by correntropy[J]. Journal of the Franklin Institute, 2018, 355(4): 1945–1966. doi: 10.1016/j.jfranklin.2017.08.014
    DAI Jianhua, HU Qinghua, HU Hu, et al. Neighbor inconsistent pair selection for attribute reduction by rough set approach[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(2): 937–950. doi: 10.1109/TFUZZ.2017.2698420
    BU Fanyu. An efficient fuzzy c-means approach based on canonical polyadic decomposition for clustering big data in IoT[J]. Future Generation Computer Systems, 2018, 88: 675–682. doi: 10.1016/j.future.2018.04.045
    MACIEJEWSKI R, JANG Y, WOO I, et al. Abstracting attribute space for transfer function exploration and design[J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(1): 94–107. doi: 10.1109/TVCG.2012.105
    李保珍, 张亭亭. 成对属性关联分析及其属性空间构建[J]. 情报学报, 2014, 33(11): 1194–1203.

    LI Baozhen and ZHANG Tingting. Association analysis of pairwise attributes and construction of attribute space[J]. Journal of the China Society for Scientific and Technical Information, 2014, 33(11): 1194–1203.
    WEI Cuiping, WANG Pei, and ZHANG Yuzhong. Entropy, similarity measure of interval-valued intuitionistic fuzzy sets and their applications[J]. Information Sciences, 2011, 181(19): 4273–4286. doi: 10.1016/j.ins.2011.06.001
    BACHE K and LICHMAN M. UCI irvine machine learning repository[EB/OL]. Irvine, CA: University of California, School of Information and Computer Science, http://archive.ics.uci.edu/ml2013.
    RAND W M. Objective criteria for the evaluation of clustering methods[J]. Journal of the American Statistical Association, 1971, 66(336): 846–850. doi: 10.1080/01621459.1971.10482356
    COOMBS C H, DAWES R M, and TVERSKY A. Mathematical Psychology: An Elementary Introduction[M]. Englewood Cliffs, USA: Prentice-Hall, 1970: 391–406.
    ZHANG Daoqiang and CHEN Songcan. Clustering incomplete data using kernel-based fuzzy C-means algorithm[J]. Neural Processing Letters, 2003, 18(3): 155–162. doi: 10.1023/B:NEPL.0000011135.19145.1b
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(6)

    Article Metrics

    Article views (3071) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return