Citation: | Shuzhen CHEN, Yijun ZHANG, Qiusheng LIAN. JPEG Compression Artifacts Reduction Algorithm Based on Multi-scale Dense Residual Network[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2479-2486. doi: 10.11999/JEIT180963 |
FOI A, KATKOVNIK V, and EGIAZARIAN K. Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images[J]. IEEE Transactions on Image Processing, 2007, 16(5): 1395–1411. doi: 10.1109/TIP.2007.891788
|
YOO S B, CHOI K, and RA J B. Post-processing for blocking artifact reduction based on inter-block correlation[J]. IEEE Transactions on Multimedia, 2014, 16(6): 1536–1548. doi: 10.1109/TMM.2014.2327563
|
ZHAO Chen, ZHANG Jian, MA Siwei, et al. Reducing image compression artifacts by structural sparse representation and quantization constraint prior[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(10): 2057–2071. doi: 10.1109/TCSVT.2016.2580399
|
吕晓琪, 吴凉, 谷宇, 等. 基于深度卷积神经网络的低剂量CT肺部去噪[J]. 电子与信息学报, 2018, 40(6): 1353–1359. doi: 10.11999/JEIT170769
LÜ Xiaoqi, WU Liang, GU Yu, et al. Low dose CT lung denoising model based on deep convolution neural network[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1353–1359. doi: 10.11999/JEIT170769
|
DONG Chao, LOY C C, HE Kaiming, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295–307. doi: 10.1109/TPAMI.2015.2439281
|
郭智, 宋萍, 张义, 等. 基于深度卷积神经网络的遥感图像飞机目标检测方法[J]. 电子与信息学报, 2018, 40(11): 2684–2690. doi: 10.11999/JEIT180117
GUO Zhi, SONG Ping, ZHANG Yi, et al. Aircraft detection method based on deep convolutional neural network for remote sensing images[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2684–2690. doi: 10.11999/JEIT180117
|
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
|
BADRINARAYANAN V, KENDALL A, and CIPOLLA R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481–2495. doi: 10.1109/TPAMI.2016.2644615
|
DONG Chao, DENG Yubin, LOY C C, et al. Compression artifacts reduction by a deep convolutional network[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 576-584. doi: 10.1109/ICCV.2015.73.
|
SVOBODA P, HRADIS M, BARINA D, et al. Compression artifacts removal using convolutional neural networks[J/OL]. arXiv preprint arXiv: 1605.00366. http://arxiv.org/abs/1605.00366, 2016.
|
ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142–3155. doi: 10.1109/TIP.2017.2662206
|
KIM Y, HWANG I, and CHO N I. A new convolutional network-in-network structure and its applications in skin detection, semantic segmentation, and artifact reduction[J/OL]. arXiv preprint arXiv: 1701.06190. http://arxiv.org/abs/1701.06190, 2017.
|
SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9.
|
LIU Pengju, ZHANG Hongzhi, ZHANG Kai, et al. Multi-level Wavelet-CNN for image restoration[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, USA, 2018: 886–895.
|
RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241.
|
GUO Jun and CHAO Hongyang. One-to-many network for visually pleasing compression artifacts reduction[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4867–4876.
|
GALTERI L, SEIDENARI L, BERTINI M, et al. Deep generative adversarial compression artifact removal[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 4836–4845.
|
HUANG Gao, LIU Zhuang, WEINBERGER K Q, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017, 1: 2261–2269.
|
ZHANG Kai, ZUO Wangmeng, GU Shuhang, et al. Learning deep CNN denoiser prior for image restoration[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017, 2: 2808–2817.
|
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
|