Advanced Search
Volume 41 Issue 10
Oct.  2019
Turn off MathJax
Article Contents
Wujie ZHOU, Ting PAN, Pengli GU, Zhinian ZHAI. Depth Estimation of Monocular Road Images Based on Pyramid Scene Analysis Network[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2509-2515. doi: 10.11999/JEIT180957
Citation: Wujie ZHOU, Ting PAN, Pengli GU, Zhinian ZHAI. Depth Estimation of Monocular Road Images Based on Pyramid Scene Analysis Network[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2509-2515. doi: 10.11999/JEIT180957

Depth Estimation of Monocular Road Images Based on Pyramid Scene Analysis Network

doi: 10.11999/JEIT180957
Funds:  The National Natural Science Foundation of China (61502429), The Zhejiang Provincial Natural Science foundation (LY18F020012)
  • Received Date: 2018-10-12
  • Rev Recd Date: 2019-05-21
  • Available Online: 2019-05-28
  • Publish Date: 2019-10-01
  • Considering the problem that the prediction accuracy is not accurate enough when the depth information is recovered from the monocular vision image, a method of depth estimation of road scenes based on pyramid pooling network is proposed. Firstly, using a combination of four residual network blocks, the road scene image features are extracted, and then through the sampling, the features are gradually restored to the original image size, and the depth of the residual block is increased. Considering the diversity of information in different scales, the features with same sizes extracted from the sampling process and the feature extraction process are merged. In addition, pyramid pooling network blocks are added to the advanced features extracted by four residual network blocks for scene analysis, and the feature graph output of pyramid pooling network blocks is finally restored to the original image size and input prediction layer together with the output of the upper sampling module. Through experiments on KITTI data set, the results show that the proposed method is superior to the existing method.
  • loading
  • LUO Yue, REN J, LIN Mude, et al. Single view stereo matching[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 155–163.
    SILBERMAN N, HOIEM D, KOHLI P, et al. Indoor segmentation and support inference from RGBD images[C]. The 12th European Conference on Computer Vision, Florence, Italy, 2012: 746–760.
    REN Xiaofeng, BO Liefeng, and FOX D. RGB-(D) scene labeling: Features and algorithms[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 2759–2766.
    SHOTTON J, SHARP T, KIPMAN A, et al. Real-time human pose recognition in parts from single depth images[J]. Communications of the ACM, 2013, 56(1): 116–124. doi: 10.1145/2398356
    ALP GÜLER R, NEVEROVA N, and KOKKINOS I. Densepose: Dense human pose estimation in the wild[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7297–7306.
    LUO Wenjie, SCHWING A G, and URTASUN R. Efficient deep learning for stereo matching[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 5695–5703.
    FLINT A, MURRAY D, and REID I. Manhattan scene understanding using monocular, stereo, and 3D features[C]. 2011 International Conference on Computer Vision, Barcelona, Spain, 2011: 2228–2235.
    KUNDU A, LI Yin, DELLAERT F, et al. Joint semantic segmentation and 3D reconstruction from monocular video[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 703–718.
    YAMAGUCHI K, MCALLESTER D, and URTASUN R. Efficient joint segmentation, occlusion labeling, stereo and flow estimation[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 756–771.
    BAIG M H and TORRESANI L. Coupled depth learning[C]. 2016 IEEE Winter Conference on Applications of Computer Vision, Lake Placid, USA, 2016: 1–10.
    EIGEN D and FERGUS R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 2650–2658.
    SCHARSTEIN D and SZELISKI R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 2002, 47(1/3): 7–42. doi: 10.1023/A:1014573219977
    UPTON K. A modern approach[J]. Manufacturing Engineer, 1995, 74(3): 111–113. doi: 10.1049/me:19950308
    FLYNN J, NEULANDER I, PHILBIN J, et al. Deep stereo: Learning to predict new views from the world's imagery[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 5515–5524.
    SAXENA A, CHUNG S H, and NG A Y. 3-D depth reconstruction from a single still image[J]. International Journal of Computer Vision, 2008, 76(1): 53–69.
    KARSCH K, LIU Ce, and KANG S B. Depth transfer: Depth extraction from video using non-parametric sampling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(11): 2144–2158. doi: 10.1109/TPAMI.2014.2316835
    EIGEN D, PUHRSCH C, and FERGUS R. Depth map prediction from a single image using a multi-scale deep network[C]. The 27th International Conference on Neural Information Processing Systems, Montréal, Canada, 2014: 2366–2374.
    LAINA I, RUPPRECHT C, BELAGIANNIS V, et al. Deeper depth prediction with fully convolutional residual networks[C]. The 4th International Conference on 3D Vision, Stanford, USA, 2016: 239–248.
    FU Huan, GONG Mingming, WANG Chaohui, et al. Deep ordinal regression network for monocular depth estimation[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 2002–2011.
    DIMITRIEVSKI M, GOOSSENS B, VEELAERT P, et al. High resolution depth reconstruction from monocular images and sparse point clouds using deep convolutional neural network[J]. SPIE, 2017, 10410: 104100H.
    MANCINI M, COSTANTE G, VALIGI P, et al. Toward domain independence for learning-based monocular depth estimation[J]. IEEE Robotics and Automation Letters, 2017, 2(3): 1778–1785. doi: 10.1109/LRA.2017.2657002
    GARG R, VIJAY KUMAR B G, CARNEIRO G, et al. Unsupervised CNN for single view depth estimation: Geometry to the rescue[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 740–756.
    KUZNIETSOV Y, STUCKLER J, and LEIBE B. Semi-supervised deep learning for monocular depth map prediction[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6647–6655.
    GODARD C, MAC AODHA O, and BROSTOW G J. Unsupervised monocular depth estimation with left-right consistency[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6602–6611.
    ZORAN D, ISOLA P, KRISHNAN D, et al. Learning ordinal relationships for mid-level vision[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 388–396.
    CHEN Weifeng, FU Zhao, YANG Dawei, et al. Single-image depth perception in the wild supplementary Materia[C]. The 30th Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 730–738.
    HE Kaiming, ZHANG Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    ZHAO Hengshuang, SHI Jianping, QI Xiaojuan, et al. Pyramid scene parsing network[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6230–6239.
    ZHOU Bolei, KHOSLA A, LAPEDRIZA A, et al. Object detectors emerge in deep scene CNNs[J]. arXiv preprint arXiv: 1412.6856, 2014.
    SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9.
    UHRIG J, SCHNEIDER N, SCHNEIDER L, et al. Sparsity invariant CNNs[C]. 2017 International Conference on 3D Vision, Qingdao, China, 2017: 11–20.
    KINGMA D P and BA J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv: 1412.6980, 2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (2991) PDF downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return