Advanced Search
Volume 41 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
Ping SUI, Ying GUO, Hongguang LI, Yuzhou WANG. Frequency-hopping Transmitter Classification Based on Chaotic Attractor Reconstruction and Low-rank Clustering[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2965-2971. doi: 10.11999/JEIT180947
Citation: Ping SUI, Ying GUO, Hongguang LI, Yuzhou WANG. Frequency-hopping Transmitter Classification Based on Chaotic Attractor Reconstruction and Low-rank Clustering[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2965-2971. doi: 10.11999/JEIT180947

Frequency-hopping Transmitter Classification Based on Chaotic Attractor Reconstruction and Low-rank Clustering

doi: 10.11999/JEIT180947
Funds:  The National Natural Science Foundation of China (61601500)
  • Received Date: 2018-10-12
  • Rev Recd Date: 2019-03-14
  • Available Online: 2019-04-13
  • Publish Date: 2019-12-01
  • The transient signal without modulation information of the radiation source can characterize the unintentional modulation characteristics of the radiation source. The analysis of the transient signal can realize the radiation source identification. In the switching on and frequency conversion process of the frequency-hopping signal, there is a transient adjustment time without information transmission. In the transient adjustment moment, the signal transmitted by the transmitter is a non-linear, non-stationary and non-Gaussian signal without modulation information. This transient time series can reflect the device characteristics of the frequency-hopping transmitter, and the sequence often exhibits complex chaotic characteristics. Therefore, from the idea of chaotic time series analysis and Low-rank characteristics of transient signal, a frequency-hopping transmitter classification algorithm is proposed based on chaotic attractor reconstruction and Low-rank clustering. The experimental tests show that the transient signal of the frequency-hopping transmitter belongs to the chaotic time series. At the same time, the classification results of the frequency-hopping signals demonstrate the feasibility of the Low-rank clustering algorithm in frequency-hopping transmitter classification.
  • loading
  • 齐昶, 王斌, 丁海军. 基于KHM聚类算法的跳频信号分选[J]. 声学技术, 2011, 30(6): 547–551. doi: 10.3969/j.issn1000-3630.2011.06.017

    QI Chang, WANG Bin, and DING Haijun. Identification of frequency hopping signals based on clustering[J]. Technical Acoustics, 2011, 30(6): 547–551. doi: 10.3969/j.issn1000-3630.2011.06.017
    姚瑶, 赵知劲, 尚俊娜. 一种跳频信号网台分选方法[J]. 杭州电子科技大学学报, 2009, 29(1): 33–36. doi: 10.3969/j.issn.1001-9146.2009.01.009

    YAO Yao, ZHAO Zhijin, and SHANG Junna. A method for FH signal network-station sorting[J]. Journal of Hangzhou Dianzi University, 2009, 29(1): 33–36. doi: 10.3969/j.issn.1001-9146.2009.01.009
    于欣永, 郭英, 张坤峰, 等. 基于盲源分离的多跳频信号网台分选算法[J]. 信号处理, 2017, 33(8): 1082–1089. doi: 10.16798/j.issn.1003-0530.2017.08.008

    YU Xinyong, GUO Ying, ZHANG Kunfeng, et al. A network sorting algorithm based on blind source separation of multi-FH signal[J]. Journal of Signal Processing, 2017, 33(8): 1082–1089. doi: 10.16798/j.issn.1003-0530.2017.08.008
    ELLIS K J and SERINKEN N. Characteristics of radio transmitter fingerprints[J]. Radio Science, 2016, 36(4): 585–597. doi: 10.1029/2000rs002345
    SUI Ping, GUO Ying, ZHANG Kunfeng, et al. Frequency-hopping transmitter fingerprint feature classification based on kernel collaborative representation classifier[J]. Wireless Communications and Mobile Computing, 2017, 2017: 9403590. doi: 10.1155/2017/9403590
    顾晓辉, 刘永强, 杨绍普, 等. 基于混沌吸引子特征量的滚动轴承故障诊断[J]. 石家庄铁道大学学报: 自然科学版, 2015, 28(1): 91–95. doi: 10.13319/j.cnki.sjztddxxbzrb.2015.01.19

    GU Xiaohui, LIU Yongqiang, YANG Shaopu, et al. Fault diagnosis of rolling bearing based on characteristic auantities of chaotic attractor[J]. Journal of Shijiazhuang Tiedao University:Natural Science Edition, 2015, 28(1): 91–95. doi: 10.13319/j.cnki.sjztddxxbzrb.2015.01.19
    相征, 张太镒, 孙建成. 基于混沌吸引子的快衰落信道预测算法[J]. 西安电子科技大学学报: 自然科学版, 2006, 33(1): 145–149. doi: 10.3969/j.issn.1001-2400.2006.01.034

    XIANG Zheng, ZHANG Taiyi, and SUN Jiancheng. Prediction algorithm for fast fading channels based on the chaotic attractor[J]. Journal of Xidian University, 2006, 33(1): 145–149. doi: 10.3969/j.issn.1001-2400.2006.01.034
    王皓石. 图像的混沌吸引子研究[D]. [硕士论文], 吉林大学, 2015.

    WANG Haoshi. Study on the chaotic attractor of image[D]. [Master dissertation], Jinlin University, 2015.
    TAKENS F. Detecting Strange Attractors in Turbulence[M]. RAND D and YOUNG L S. Lecture Notes in Mathematics. Berlin, Gemany, Springer-Verlag, 1981: 366–381.
    KUGIUMTZIS D. State space reconstruction parameters in the analysis of chaotic time series - the role of the time window length[J]. Physica D: Nonlinear Phenomena, 1996, 95(1): 13–28. doi: 10.1016/0167-2789(96)00054-1
    SUN L, KINSNER W, and SERINKEN N. Characterization and feature extraction of transient signals using multifractal measures[C]. 1999 IEEE Canadian Conference on Electrical and Computer Engineering, Edmonton, Canada, 1999: 781–785.
    SHAW D and KINSNER W. Multifractal modelling of radio transmitter transients for classification[C]. IEEE WESCANEX 97 Communications, Power and Computing. Conference Proceedings, Winnipeg, Canada, 2002: 306–312.
    FRASER A M and SWINNEY H L. Independent coordinates for strange attractors from mutual information[J]. Physical Review A, 1986, 33(2): 1134–1140. doi: 10.1103/physreva.33.1134
    KENNEL M B, BROWN R, and ABARBANEL H D. Determining embedding dimension for phase-space reconstruction using a geometrical construction[J]. Physical Review A, 1992, 45(6): 3403–3411. doi: 10.1103/physreva.45.3403
    LIU Guangcan, LIN Zhouchen, YAN Shuicheng, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171–184. doi: 10.1109/tpami.2012.88
    YANG Junfeng and ZHANG Yin. Alternating direction algorithms for L1-problems in compressive sensing[J]. SIAM Journal on Scientific Computing, 2011, 33(1): 250–278. doi: 10.1137/090777761
    ZHANG Haixian, ZHANG Yi, and XI Peng. fLRR: Fast Low-rank representation using Frobenius-norm[J]. Electronics Letters, 2014, 50(13): 936–938. doi: 10.1049/el.2014.1396
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (2020) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return