Citation: | Derong CHEN, Haibo LÜ, Qiufu LI, Jiulu GONG, Zhiqiang LI, Xiaojun HAN. Total Variation Regularized Reconstruction Algorithms for Block Compressive Sensing[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2217-2223. doi: 10.11999/JEIT180931 |
CANDÈS E J, ELDAR Y C, NEEDELL D, et al. Compressed sensing with coherent and redundant dictionaries[J]. Applied and Computational Harmonic Analysis, 2010, 31(1): 59–73. doi: 10.1016/j.acha.2010.10.002
|
KABANAVA M and RAUHUT H. Cosparsity in Compressed Sensing[M]. Cham: Birkhäuser, 2015: 315–339.
|
ZHOU Chengwei, GU Yujie, ZHANG Y D, et al. Compressive sensing-based coprime array direction-of-arrival estimation[J]. IET Communications, 2017, 11(11): 1719–1724. doi: 10.1049/iet-com.2016.1048
|
GAN Lu. Block compressed sensing of natural images[C]. 2007 5th International Conference on Digital Signal Processing, Cardiff, UK, 2007: 403–406.
|
VAN CHIEN T, DINH K Q, JEON B, et al. Block compressive sensing of image and video with nonlocal Lagrangian multiplier and patch-based sparse representation[J]. Signal Processing: Image Communication, 2017, 54: 93–106. doi: 10.1016/j.image.2017.02.012
|
MUN S and FOWLER J E. Block compressed sensing of images using directional transforms[C]. The 16th IEEE International Conference on Image Processing, Cairo, Egypt, 2009: 3021–3024.
|
唐朝伟, 王雪锋, 杜永光. 一种稀疏度自适应分段正交匹配追踪算法[J]. 中南大学学报(自然科学版), 2016, 47(3): 784–792. doi: 10.11817/j.issn.1672-7207.2016.03.011
TANG Chaowei, WANG Xuefeng, and DU Yongguang. A sparsity adaptive stagewise orthogonal matching pursuit algorithm[J]. Journal of Central South University (Science and Technology)
|
CANDES E J and TAO T. Near-optimal signal recovery from random projections: Universal encoding strategies[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406–5425. doi: 10.1109/TIT.2006.885507
|
EFTEKHARI A and WAKIN M B. New analysis of manifold embeddings and signal recovery from compressive measurements[J]. Applied and Computational Harmonic Analysis, 2015, 39(1): 67–109. doi: 10.1016/j.acha.2014.08.005
|
陈勇, 吴春婷, 刘焕淋. 基于改进压缩感知的缺损光纤Bragg光栅传感信号修复方法[J]. 电子与信息学报, 2018, 40(2): 386–393. doi: 10.11999/JEIT170424
CHEN Yong, WU Chunting, and LIU Huanlin. A repaired algorithm based on improved compressed sensing to repair damaged fiber bragg grating sensing signal[J]. Journal of Electronics &Information Technology, 2018, 40(2): 386–393. doi: 10.11999/JEIT170424
|
BLUMENSATH T and DAVIES M E. Iterative hard thresholding for compressed sensing[J]. Applied and Computational Harmonic Analysis, 2009, 27(3): 265–274. doi: 10.1016/j.acha.2009.04.002
|
宋和平, 王国利. 稀疏信号重构的阈值化迭代检测估计[J]. 电子与信息学报, 2014, 36(10): 2431–2437. doi: 10.3724/SP.J.1146.2013.01696
SONG Hepin and WANG Guoli. Sparse signal recovery via iterative detection estimation with thresholding[J]. Journal of Electronics &Information Technology, 2014, 36(10): 2431–2437. doi: 10.3724/SP.J.1146.2013.01696
|
XIAO Yunhai, YANG Junfeng, and YUAN Xiaoming. Alternating algorithms for total variation image reconstruction from random projections[J]. Inverse Problems & Imaging, 2012, 6(3): 547–563. doi: 10.3934/ipi.2012.6.547
|
CANDES E J, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489–509. doi: 10.1109/TIT.2005.862083
|
CANDÈS E J, ROMBERG J K, and TAO T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207–1223. doi: 10.1002/cpa.20124
|
CHEN Gao, LI Gang, and ZHANG Jiashu. Tensor compressed video sensing reconstruction by combination of fractional-order total variation and sparsifying transform[J]. Signal Processing: Image Communication, 2017, 55: 146–156. doi: 10.1016/j.image.2017.03.021
|
USC. The USC-SIPI image database[EB/OL]. http://sipi.usc.edu/database/database.php?volume=misc&image=12, 2018.
|
CHEN Duo, WAN Suiren, XIANG Jing, et al. A high-performance seizure detection algorithm based on Discrete Wavelet Transform (DWT) and EEG[J]. PLoS One, 2017, 12(3): e0173138. doi: 10.1371/journal.pone.0173138
|
YANG Jingyu, XU Wenli, DAI Qionghai, et al. Image compression using 2D Dual-tree Discrete Wavelet Transform (DDWT)[C]. 2007 IEEE International Symposium on Circuits and Systems, New Orleans, USA, 2007: 297–300.
|
SAI N S T and PATIL R C. Image retrieval using 2D dual-tree discrete wavelet transform[J]. International Journal of Computer Applications, 2011, 14(6): 1–8. doi: 10.5120/1891-2513
|
SENDUR L and SELESNICK I W. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency[J]. IEEE Transactions on Signal Processing, 2002, 50(11): 2744–2756. doi: 10.1109/TSP.2002.804091
|
GOMATHI R, and SELVAKUMARAN S. A new bivariate shrinkage denoising of remotely sensed images with Discrete Shearlet Transform (DST)[C]. 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 2018: 173–175.
|
ZHANG Fuqiang and LIU Zengli. Image denoising based on the bivariate model of dual tree complex wavelet transform[C]. The 11th International Conference on Computational Intelligence and Security, Shenzhen, China, 2015: 171–174. doi: 10.1109/CIS.2015.49.
|