Advanced Search
Volume 41 Issue 9
Sep.  2019
Turn off MathJax
Article Contents
Derong CHEN, Haibo LÜ, Qiufu LI, Jiulu GONG, Zhiqiang LI, Xiaojun HAN. Total Variation Regularized Reconstruction Algorithms for Block Compressive Sensing[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2217-2223. doi: 10.11999/JEIT180931
Citation: Derong CHEN, Haibo LÜ, Qiufu LI, Jiulu GONG, Zhiqiang LI, Xiaojun HAN. Total Variation Regularized Reconstruction Algorithms for Block Compressive Sensing[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2217-2223. doi: 10.11999/JEIT180931

Total Variation Regularized Reconstruction Algorithms for Block Compressive Sensing

doi: 10.11999/JEIT180931
  • Received Date: 2018-09-30
  • Rev Recd Date: 2019-02-18
  • Available Online: 2019-03-23
  • Publish Date: 2019-09-10
  • In order to improve the quality of reconstruction image by Block Compressed Sensing (BCS), a Total Variation Iterative Threshold regularization image reconstruction algorithm (BCS-TVIT) is proposed. Combining the properties of local smoothing and bounded variation of the image, BCS-TVIT uses the minimization l0 norm and total variation to construct the objective function. To solve the problem that l0 norm term and the block measurement constraint can not be optimized directly, the iterative threshold method is used to minimize the l0 norm of the reconstructed image, and the convex set projection is employed to guarantee the block measurement constraint condition. Experiments show that BCS-TVIT has better performance than BCS-SPL in PSNR by 2 dB. Meanwhile, BCS-TVIT can eliminate the " bright spot” effect of BCS-SPL, having better visual effect. Comparing with the minimum total variation, the proposed algorithm increases PSNR by 1 dB, and the reconstruction time is reduced by two orders of magnitude.
  • loading
  • CANDÈS E J, ELDAR Y C, NEEDELL D, et al. Compressed sensing with coherent and redundant dictionaries[J]. Applied and Computational Harmonic Analysis, 2010, 31(1): 59–73. doi: 10.1016/j.acha.2010.10.002
    KABANAVA M and RAUHUT H. Cosparsity in Compressed Sensing[M]. Cham: Birkhäuser, 2015: 315–339.
    ZHOU Chengwei, GU Yujie, ZHANG Y D, et al. Compressive sensing-based coprime array direction-of-arrival estimation[J]. IET Communications, 2017, 11(11): 1719–1724. doi: 10.1049/iet-com.2016.1048
    GAN Lu. Block compressed sensing of natural images[C]. 2007 5th International Conference on Digital Signal Processing, Cardiff, UK, 2007: 403–406.
    VAN CHIEN T, DINH K Q, JEON B, et al. Block compressive sensing of image and video with nonlocal Lagrangian multiplier and patch-based sparse representation[J]. Signal Processing: Image Communication, 2017, 54: 93–106. doi: 10.1016/j.image.2017.02.012
    MUN S and FOWLER J E. Block compressed sensing of images using directional transforms[C]. The 16th IEEE International Conference on Image Processing, Cairo, Egypt, 2009: 3021–3024.
    唐朝伟, 王雪锋, 杜永光. 一种稀疏度自适应分段正交匹配追踪算法[J]. 中南大学学报(自然科学版), 2016, 47(3): 784–792. doi: 10.11817/j.issn.1672-7207.2016.03.011

    TANG Chaowei, WANG Xuefeng, and DU Yongguang. A sparsity adaptive stagewise orthogonal matching pursuit algorithm[J]. Journal of Central South University (Science and Technology), 2016, 47(3): 784–792. doi: 10.11817/j.issn.1672-7207.2016.03.011
    CANDES E J and TAO T. Near-optimal signal recovery from random projections: Universal encoding strategies[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406–5425. doi: 10.1109/TIT.2006.885507
    EFTEKHARI A and WAKIN M B. New analysis of manifold embeddings and signal recovery from compressive measurements[J]. Applied and Computational Harmonic Analysis, 2015, 39(1): 67–109. doi: 10.1016/j.acha.2014.08.005
    陈勇, 吴春婷, 刘焕淋. 基于改进压缩感知的缺损光纤Bragg光栅传感信号修复方法[J]. 电子与信息学报, 2018, 40(2): 386–393. doi: 10.11999/JEIT170424

    CHEN Yong, WU Chunting, and LIU Huanlin. A repaired algorithm based on improved compressed sensing to repair damaged fiber bragg grating sensing signal[J]. Journal of Electronics &Information Technology, 2018, 40(2): 386–393. doi: 10.11999/JEIT170424
    BLUMENSATH T and DAVIES M E. Iterative hard thresholding for compressed sensing[J]. Applied and Computational Harmonic Analysis, 2009, 27(3): 265–274. doi: 10.1016/j.acha.2009.04.002
    宋和平, 王国利. 稀疏信号重构的阈值化迭代检测估计[J]. 电子与信息学报, 2014, 36(10): 2431–2437. doi: 10.3724/SP.J.1146.2013.01696

    SONG Hepin and WANG Guoli. Sparse signal recovery via iterative detection estimation with thresholding[J]. Journal of Electronics &Information Technology, 2014, 36(10): 2431–2437. doi: 10.3724/SP.J.1146.2013.01696
    XIAO Yunhai, YANG Junfeng, and YUAN Xiaoming. Alternating algorithms for total variation image reconstruction from random projections[J]. Inverse Problems & Imaging, 2012, 6(3): 547–563. doi: 10.3934/ipi.2012.6.547
    CANDES E J, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489–509. doi: 10.1109/TIT.2005.862083
    CANDÈS E J, ROMBERG J K, and TAO T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207–1223. doi: 10.1002/cpa.20124
    CHEN Gao, LI Gang, and ZHANG Jiashu. Tensor compressed video sensing reconstruction by combination of fractional-order total variation and sparsifying transform[J]. Signal Processing: Image Communication, 2017, 55: 146–156. doi: 10.1016/j.image.2017.03.021
    USC. The USC-SIPI image database[EB/OL]. http://sipi.usc.edu/database/database.php?volume=misc&image=12, 2018.
    CHEN Duo, WAN Suiren, XIANG Jing, et al. A high-performance seizure detection algorithm based on Discrete Wavelet Transform (DWT) and EEG[J]. PLoS One, 2017, 12(3): e0173138. doi: 10.1371/journal.pone.0173138
    YANG Jingyu, XU Wenli, DAI Qionghai, et al. Image compression using 2D Dual-tree Discrete Wavelet Transform (DDWT)[C]. 2007 IEEE International Symposium on Circuits and Systems, New Orleans, USA, 2007: 297–300.
    SAI N S T and PATIL R C. Image retrieval using 2D dual-tree discrete wavelet transform[J]. International Journal of Computer Applications, 2011, 14(6): 1–8. doi: 10.5120/1891-2513
    SENDUR L and SELESNICK I W. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency[J]. IEEE Transactions on Signal Processing, 2002, 50(11): 2744–2756. doi: 10.1109/TSP.2002.804091
    GOMATHI R, and SELVAKUMARAN S. A new bivariate shrinkage denoising of remotely sensed images with Discrete Shearlet Transform (DST)[C]. 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 2018: 173–175.
    ZHANG Fuqiang and LIU Zengli. Image denoising based on the bivariate model of dual tree complex wavelet transform[C]. The 11th International Conference on Computational Intelligence and Security, Shenzhen, China, 2015: 171–174. doi: 10.1109/CIS.2015.49.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(4)

    Article Metrics

    Article views (2469) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return