Advanced Search
Volume 41 Issue 9
Sep.  2019
Turn off MathJax
Article Contents
Geng ZHAO, Hong LI, Yingjie MA, Xiaohong QIN. Discrete Dynamic System without Degradation -configure N Positive Lyapunov Exponents[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2280-2286. doi: 10.11999/JEIT180925
Citation: Geng ZHAO, Hong LI, Yingjie MA, Xiaohong QIN. Discrete Dynamic System without Degradation -configure N Positive Lyapunov Exponents[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2280-2286. doi: 10.11999/JEIT180925

Discrete Dynamic System without Degradation -configure N Positive Lyapunov Exponents

doi: 10.11999/JEIT180925
Funds:  The National Natural Science Foundation of China(61772047)
  • Received Date: 2018-09-30
  • Rev Recd Date: 2019-02-21
  • Available Online: 2019-03-15
  • Publish Date: 2019-09-10
  • Considering discrete-time chaotic dynamics systems, a new algorithm is proposed which is based on matrix eigenvalues and eigenvectors to configure Lyapunov exponents to be positive. The eigenvalues and eigenvectors of the discrete controlled matrix are calculated to design a general controller with positive Lyapunov exponents. The theory proves the boundedness of the system orbit and the finiteness of the Lyapunov exponents. The numerical simulation analysis of the linear feedback operator and the perturbation feedback operator verifies the correctness, versatility and effectiveness of the algorithm. Performance evaluations show that, compared with Chen-Lai methods, the proposed method can construct chaotic system with lower computation complexity and the running time is shorter and the outputs demonstrate strong randomness. Thus, a discrete chaotic system with no degradation and no merger is realized.
  • loading
  • 陈关荣. 控制非线性动力系统的混沌现象[J]. 控制理论与应用, 1997, 14(1): 1–6.

    CHEN Guanrong. Controlling chaos in nonlinear dynamical systems[J]. Control Theory and Applications, 1997, 14(1): 1–6.
    CHEN H K and LEE C I. Anti-control of chaos in rigid body motion[J]. Chaos, Solitons & Fractals, 2004, 21(4): 957–965. doi: 10.1016/j.chaos.2003.12.034
    陈关荣, 汪小帆. 动力系统的混沌化——理论、方法与应用[M]. 上海: 上海交通大学出版社, 2006.

    CHEN Guanrong and WANG Xiaofan. Chaos of Power System - Theory, Method and Application[M]. Shanghai: Shanghai Jiao Tong University Press, 2006.
    HUA Zhongyun, Yi Shuang, ZHOU Yicong, et al. Designing hyperchaotic cat maps with any desired number of positive Lyapunov exponents[J]. IEEE Transactions on Cybernetics, 2018, 48(2): 463–473. doi: 10.1109/TCYB.2016.2642166
    WANG Chuanfu, FAN Chunlei, and DING Qun. Constructing discrete chaotic systems with positive Lyapunov exponents[J]. International Journal of Bifurcation and Chaos, 2018, 28(7): 1850084. doi: 10.1142/S0218127418500840
    CHEN Shikun, YU Simin, LÜ Jinhu, et al. Design and FPGA-based realization of a chaotic secure video communication system[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(9): 2359–2371. doi: 10.1109/TCSVT.2017.2703946
    张良, 唐驾时. 四维超混沌系统Hopf分岔分析与反控制[J]. 计算力学学报, 2018, 35(2): 188–194. doi: 10.7511/jslx20170313005

    ZHANG Liang and TANG Jiashi. Hopf bifurcation analysis and anti-control of bifurcation of a four-dimensional hyperchaotic systems[J]. Chinese Journal of Computational Mechanics, 2018, 35(2): 188–194. doi: 10.7511/jslx20170313005
    PHAM V T, VOLOS C, JAFARI S, et al. Constructing a novel no-equilibrium chaotic system[J]. International Journal of Bifurcation and Chaos, 2014, 24(5): 1450073. doi: 10.1142/S02181274145007
    LIN Zhuosheng, YU Simin, LÜ Jinhu, et al. Design and ARM-embedded implementation of a chaotic map-based real-time secure video communication system[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(7): 1203–1216. doi: 10.1109/TCSVT.2014.2369711
    ZHENG Hanzhong, YU Simin, and LÜ Jinhu. Multi-images chaotic communication and FPGA implementation[C]. The 33rd Chinese Control Conference, Nanjing, China, 2014. doi: 10.1109/ChiCC.2014.6895876.
    SHEN Chaowen, YU Simin, LÜ Jinhu, et al. Designing hyperchaotic systems with any desired number of positive Lyapunov exponents via a simple model[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61(8): 2380–2389. doi: 10.1109/TCSI.2014.2304655
    WU Yue, HUA Zhongyun, and ZHOU Yicong. N-dimensional discrete cat map generation using Laplace expansions[J]. IEEE Transactions on Cybernetics, 2016, 46(11): 2622–2633. doi: 10.1109/TCYB.2015.2483621
    王贺元, 尹霞. 新超混沌系统的动力学行为及自适应控制与同步[J]. 动力学与控制学报, 2017, 15(4): 335–341. doi: 10.6052/1672-6553-2017-002

    WANG Heyuan and YIN Xia. Dynamical behaviors of a new hyperchaotic system and its adaptive control and synchronization[J]. Journal of Dynamics and Control, 2017, 15(4): 335–341. doi: 10.6052/1672-6553-2017-002
    杨昌烨, 陈艳峰, 张波, 等. 基于参数扰动的混沌控制方案在Buck-Boost变换器中的应用研究[J]. 电源学报, 2018, 16(2): 32–37. doi: 10.13234/j.issn.2095-2805.2018.2.32

    YANG Changye, CHEN Yanfeng, ZHANG Bo, et al. Applications of chaotic control scheme based on parameter-perturbation in Buck-Boost converter[J]. Journal of Power Supply, 2018, 16(2): 32–37. doi: 10.13234/j.issn.2095-2805.2018.2.32
    MAMAT M, VAIDYANATHAN S, SAMBAS A, et al. A novel double-convection chaotic attractor, its adaptive control and circuit simulation[C]. IOP Conference Series: Materials Science and Engineering, Tangerang, Indonesia, 2018, 332: 012033. doi: 10.1088/1757-899X/332/1/012033.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (2374) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return