Citation: | Geng ZHAO, Hong LI, Yingjie MA, Xiaohong QIN. Discrete Dynamic System without Degradation -configure N Positive Lyapunov Exponents[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2280-2286. doi: 10.11999/JEIT180925 |
陈关荣. 控制非线性动力系统的混沌现象[J]. 控制理论与应用, 1997, 14(1): 1–6.
CHEN Guanrong. Controlling chaos in nonlinear dynamical systems[J]. Control Theory and Applications, 1997, 14(1): 1–6.
|
CHEN H K and LEE C I. Anti-control of chaos in rigid body motion[J]. Chaos, Solitons & Fractals, 2004, 21(4): 957–965. doi: 10.1016/j.chaos.2003.12.034
|
陈关荣, 汪小帆. 动力系统的混沌化——理论、方法与应用[M]. 上海: 上海交通大学出版社, 2006.
CHEN Guanrong and WANG Xiaofan. Chaos of Power System - Theory, Method and Application[M]. Shanghai: Shanghai Jiao Tong University Press, 2006.
|
HUA Zhongyun, Yi Shuang, ZHOU Yicong, et al. Designing hyperchaotic cat maps with any desired number of positive Lyapunov exponents[J]. IEEE Transactions on Cybernetics, 2018, 48(2): 463–473. doi: 10.1109/TCYB.2016.2642166
|
WANG Chuanfu, FAN Chunlei, and DING Qun. Constructing discrete chaotic systems with positive Lyapunov exponents[J]. International Journal of Bifurcation and Chaos, 2018, 28(7): 1850084. doi: 10.1142/S0218127418500840
|
CHEN Shikun, YU Simin, LÜ Jinhu, et al. Design and FPGA-based realization of a chaotic secure video communication system[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(9): 2359–2371. doi: 10.1109/TCSVT.2017.2703946
|
张良, 唐驾时. 四维超混沌系统Hopf分岔分析与反控制[J]. 计算力学学报, 2018, 35(2): 188–194. doi: 10.7511/jslx20170313005
ZHANG Liang and TANG Jiashi. Hopf bifurcation analysis and anti-control of bifurcation of a four-dimensional hyperchaotic systems[J]. Chinese Journal of Computational Mechanics, 2018, 35(2): 188–194. doi: 10.7511/jslx20170313005
|
PHAM V T, VOLOS C, JAFARI S, et al. Constructing a novel no-equilibrium chaotic system[J]. International Journal of Bifurcation and Chaos, 2014, 24(5): 1450073. doi: 10.1142/S02181274145007
|
LIN Zhuosheng, YU Simin, LÜ Jinhu, et al. Design and ARM-embedded implementation of a chaotic map-based real-time secure video communication system[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(7): 1203–1216. doi: 10.1109/TCSVT.2014.2369711
|
ZHENG Hanzhong, YU Simin, and LÜ Jinhu. Multi-images chaotic communication and FPGA implementation[C]. The 33rd Chinese Control Conference, Nanjing, China, 2014. doi: 10.1109/ChiCC.2014.6895876.
|
SHEN Chaowen, YU Simin, LÜ Jinhu, et al. Designing hyperchaotic systems with any desired number of positive Lyapunov exponents via a simple model[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61(8): 2380–2389. doi: 10.1109/TCSI.2014.2304655
|
WU Yue, HUA Zhongyun, and ZHOU Yicong. N-dimensional discrete cat map generation using Laplace expansions[J]. IEEE Transactions on Cybernetics, 2016, 46(11): 2622–2633. doi: 10.1109/TCYB.2015.2483621
|
王贺元, 尹霞. 新超混沌系统的动力学行为及自适应控制与同步[J]. 动力学与控制学报, 2017, 15(4): 335–341. doi: 10.6052/1672-6553-2017-002
WANG Heyuan and YIN Xia. Dynamical behaviors of a new hyperchaotic system and its adaptive control and synchronization[J]. Journal of Dynamics and Control, 2017, 15(4): 335–341. doi: 10.6052/1672-6553-2017-002
|
杨昌烨, 陈艳峰, 张波, 等. 基于参数扰动的混沌控制方案在Buck-Boost变换器中的应用研究[J]. 电源学报, 2018, 16(2): 32–37. doi: 10.13234/j.issn.2095-2805.2018.2.32
YANG Changye, CHEN Yanfeng, ZHANG Bo, et al. Applications of chaotic control scheme based on parameter-perturbation in Buck-Boost converter[J]. Journal of Power Supply, 2018, 16(2): 32–37. doi: 10.13234/j.issn.2095-2805.2018.2.32
|
MAMAT M, VAIDYANATHAN S, SAMBAS A, et al. A novel double-convection chaotic attractor, its adaptive control and circuit simulation[C]. IOP Conference Series: Materials Science and Engineering, Tangerang, Indonesia, 2018, 332: 012033. doi: 10.1088/1757-899X/332/1/012033.
|