Advanced Search
Volume 41 Issue 11
Nov.  2019
Turn off MathJax
Article Contents
Haibo WANG, Wenhua HUANG, Tao BA, Yue JIANG. Inverse Synthetic Aperture Radar Imaging with Non-Coherent Short Pulse Radar and Its Sparse Recovery[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2646-2653. doi: 10.11999/JEIT180912
Citation: Haibo WANG, Wenhua HUANG, Tao BA, Yue JIANG. Inverse Synthetic Aperture Radar Imaging with Non-Coherent Short Pulse Radar and Its Sparse Recovery[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2646-2653. doi: 10.11999/JEIT180912

Inverse Synthetic Aperture Radar Imaging with Non-Coherent Short Pulse Radar and Its Sparse Recovery

doi: 10.11999/JEIT180912
  • Received Date: 2018-09-21
  • Rev Recd Date: 2019-01-12
  • Available Online: 2019-05-20
  • Publish Date: 2019-11-01
  • The microwave source of Non-Coherent Short Pulse (NCSP) radar transmits short pulse. Thus, for high velocity targets, the motion effect in the pulse duration can be neglected, and the echo signal does not need special motion compensation. In order to use the NCSP radar signal for Inverse Synthetic Aperture Radar (ISAR) imaging, the compensation coherent processing method is applied to removing the uncertainty of the envelope time and the initial phase uncertainty. Assuming that the echo is envelope-aligned and initially compensated by conventional methods, ISAR radar imaging can be performed using the Range-Doppler (RD) method, subsequently. The simulation verifies the feasibility of the compensation signal ISAR imaging. However, the carrier-frequency random jitter factor of NCSP radar causes random-modulated sidelobes in the Doppler dimension, which affect imaging quality. In this paper, the sparse recovery technique is used to perform sparse reconstruction of the target scattering center in the imaging space. The Orthogonal Matching Pursuit (OMP) algorithm and the Sparse Bayesian Learning (SBL) algorithm are used as the recovery algorithm for imaging simulation experiments. The simulation results show that the sparse recovery technique can suppress the imaging sidelobes caused by non-coherence and improve the imaging quality.
  • loading
  • 胡银福, 冯进军. 用于雷达的新型真空电子器件[J]. 雷达学报, 2016, 5(4): 350–360. doi: 10.12000/JR16078

    HU Yinfu and FENG Jinjun. New vacuum electronic devices for radar[J]. Journal of Radars, 2016, 5(4): 350–360. doi: 10.12000/JR16078
    钱宝良. 国外高功率微波技术的研究现状与发展趋势[J]. 真空电子技术, 2015(2): 1–74. doi: 10.16540/j.cnki.cn11-2485/tn.2015.02.001

    QIAN Baoliang. The research status and developing tendency of high power microwave technology in foreign countries[J]. Vacuum Electronics, 2015(2): 1–74. doi: 10.16540/j.cnki.cn11-2485/tn.2015.02.001
    XIAO Renzhen, ZHANG Zhiqiang, LIANG Tiezhu, et al. A relativistic backward wave oscillator for directly generating circularly polarized TE11 mode[J]. Physics of Plasmas, 2016, 23(3): 033118. doi: 10.1063/1.4944915
    BLYAKHMAN A, CLUNIE D, HARRIS R, et al. Nanosecond gigawatt radar: Indication of small targets moving among heavy clutters[C]. 2007 IEEE Radar Conference, Boston, USA, 2007: 61–64. doi: 10.1109/RADAR.2007.374191.
    BLYAKHMAN A, CLUNIE D, MESIATS G, et al. Analysis of Nanosecond Gigawatt Radar[M]. Hirshfield J L and Petelin M L. Quasi-Optical Control of Intense Microwave Transmission. Netherlands: Springer, 2005: 283–296. doi: 10.1007/1-4020-3638-8_21.
    AUBRY A, DE MAIO A, CAROTENUTO V, et al. Radar phase noise modeling and effects-Part I: MTI filters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(2): 698–711. doi: 10.1109/TAES.2015.140549
    AUBRY A, CAROTENUTO V, DE MAIO A, et al. Radar phase noise modeling and effects-Part II: doppler processors and sidelobe blankers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(2): 712–725. doi: 10.1109/TAES.2015.140723
    RYSKIN N M, TITOV V N, and UMANTSIVA O V. Phase locking and mode switching in a backward-wave oscillator with reflections[J]. IEEE Transactions on Plasma Science, 2016, 44(8): 1270–1275. doi: 10.1109/TPS.2016.2517002
    SONG Wei, SUN Jun, SHAO Hao, et al. Inducing phase locking of multiple oscillators beyond the Adler’s condition[J]. Journal of Applied Physics, 2012, 111(2): 023302. doi: 10.1063/1.3671537
    SONG Wei, ZHANG Xiaowei, CHEN Changhua, et al. Enhancing frequency-tuning ability of an improved relativistic backward-wave oscillator[J]. IEEE Transactions on Electron Devices, 2013, 60(1): 494–497. doi: 10.1109/TED.2012.2230400
    XIAO Renzhen, SONG Zhimin, DENG Yuqun, et al. Mechanism of phase control in a klystron-like relativistic backward wave oscillator by an input signal[J]. Physics of Plasmas, 2014, 21(9): 093108. doi: 10.1063/1.4895598
    汪海波, 黄文华, 姜悦. 短脉冲非相参雷达的补偿相参处理方法研究[J]. 电子与信息学报, 2018, 40(8): 1823–1828. doi: 10.11999/JEIT171147

    WANG Haibo, HUANG Wenhua, and JIANG Yue. Compensative coherent processing algorithm for short pulse non-coherent radar[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1823–1828. doi: 10.11999/JEIT171147
    PRICKETT M J. Principles of inverse synthetic aperture radar (ISAR)[J]. IEEE EASCON Record, 1980, 14(6): 340–345.
    ZHANG Lei, QIAO Zhijun, XING Mengdao, et al. High-resolution ISAR imaging with sparse stepped-frequency waveforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11): 4630–4651. doi: 10.1109/TGRS.2011.2151865
    KHARDIKOV V V and PROSVIRNIN S L. The Algorithm for ISAR imaging of fast moving target using radar with binary phase–coded waveforms[C]. The 5th International Conference on Antenna Theory and Techniques, Kyiv, Ukraine, 2005: 339–342. doi: 10.1109/ICATT.2005.1496974.
    白雪茹. 空天目标逆合成孔径雷达成像新方法研究[D]. [博士论文], 西安电子科技大学, 2011.

    BAI Xueru. Study on new techniques for ISAR imaging of aerospace targets[D]. [Ph.D. dissertation], Xidian University, 2011.
    RAO Wei, LI Gang, and WANG Xiqin. Parametric sparse representation method for ISAR imaging of rotating targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 910–919. doi: 10.1109/TAES.2014.120535
    吴敏, 邢孟道, 张磊. 基于压缩感知的二维联合超分辨ISAR成像算法[J]. 电子与信息学报, 2014, 36(1): 187–193. doi: 10.3724/SP.J.1146.2012.01597

    WU Min, XING Mengdao, and ZHANG Lei. Two dimensional joint super-resolution ISAR imaging algorithm based on compressive sensing[J]. Journal of Electronics &Information Technology, 2014, 36(1): 187–193. doi: 10.3724/SP.J.1146.2012.01597
    ZHANG Lei, QIAO Zhijun, XING Mengdao, et al. High-resolution ISAR imaging by exploiting sparse apertures[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 997–1008. doi: 10.1109/TAP.2011.2173130
    李少东, 杨军, 陈文峰, 等. 基于压缩感知理论的雷达成像技术与应用研究进展[J]. 电子与信息学报, 2016, 38(2): 495–508. doi: 10.11999/JEIT150874

    LI Shaodong, YANG Jun, CHEN Wenfeng, et al. Overview of radar imaging technique and application based on compressive sensing theory[J]. Journal of Electronics &Information Technology, 2016, 38(2): 495–508. doi: 10.11999/JEIT150874
    HE Xingyu, TONG Ningning, HU Xiaowei, et al. High-resolution ISAR imaging based on two-dimensional group sparse recovery[J]. IET Radar, Sonar & Navigation, 2018, 12(1): 82–86. doi: 10.1049/iet-rsn.2017.0161
    LIU Zhen, CHEN Xin, and SUI Jinping. High resolution wideband imaging of fast rotating targets based on random PRI radar[J]. Progress in Electromagnetic Research M, 2018, 63: 59–70. doi: 10.2528/PIERM17081005
    TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666. doi: 10.1109/TIT.2007.909108
    吕明久, 李少东, 杨军, 等. 基于随机调频步进信号的高分辨ISAR成像方法[J]. 电子与信息学报, 2016, 38(12): 3129–3136. doi: 10.11999/JEIT160177

    LÜ Mingjiu, LI Shaodong, YANG Jun, et al. High resolution ISAR imaging method based on random chirp frequency-stepped signal[J]. Journal of Electronics &Information Technology, 2016, 38(12): 3129–3136. doi: 10.11999/JEIT160177
    LIU Hongchao, JIU Bo, LIU Hongwei, et al. Superresolution ISAR imaging based on sparse Bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 5005–5013. doi: 10.1109/TGRS.2013.2286402
    JI Shihao, XUE Ya, and CARIN L. Bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2346–2356. doi: 10.1109/TSP.2007.914345
    BABACAN S D, MOLINA R, and KATSAGGELOS A K. Fast Bayesian compressive sensing using Laplace priors[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, China, 2009: 2873–2876. doi: 10.1109/ICASSP.2009.4960223.
    苏伍各, 王宏强, 邓彬, 等. 基于稀疏贝叶斯方法的脉间捷变频ISAR成像技术研究[J]. 电子与信息学报, 2015, 37(1): 1–8. doi: 10.11999/JEIT140315

    SU Wuge, WANG Hongqiang, DENG Bin, et al. The interpulse frequency agility ISAR imaging technology based on sparse Bayesian method[J]. Journal of Electronics &Information Technology, 2015, 37(1): 1–8. doi: 10.11999/JEIT140315
    吴顺君, 梅晓春. 雷达信号处理和数据处理技术[M]. 北京: 电子工程出版社, 2008: 51–80.

    WU Shunjun and MEI Xiaochun. Radar Signal Processing and Information Processing Technology[M]. Beijing: Publishing House of Electronics Industry, 2008: 51–80.
    POTTER L C, CHIANG Daming, CARRIERE R, et al. A GTD-based parametric model for radar scattering[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(10): 1058–1067. doi: 10.1109/8.467641
    O'DONNELL A N, WILSON J L, KOLTENUK D M, et al. Compressed sensing for radar signature analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4): 2631–2639. doi: 10.1109/TAES.2013.6621841
    李峰, 郭毅. 压缩感知浅析[M]. 北京: 科学出版社, 2015: 45–79.

    LI Feng and GUO Yi. Introduce to Compress Sensing[M]. Beijing: Science Press, 2015: 45–79.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (1835) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return