Citation: | Fei WANG, Shichao WU, Shaolin LIU, Yahui ZHANG, Ying WEI. Driver Fatigue Detection Through Deep Transfer Learning in an Electroencephalogram-based System[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2264-2272. doi: 10.11999/JEIT180900 |
李刚. 基于脑功能网络的脑力疲劳检测技术及其形成机理研究[D]. [博士论文], 山东大学, 2017.
LI Gang. Study on the mental fatigue detecting technology and its formation mechanism based on brain functional network[D]. [Ph. D. dissertation], Shandong University, 2017.
|
BALANDONG R P, AHMAD R F, SAAD M N M, et al. A review on EEG-based automatic sleepiness detection systems for driver[J]. IEEE Access, 2018, 6: 22908–22919. doi: 10.1109/ACCESS.2018.2811723
|
HU Jianfeng. Comparison of different features and classifiers for driver fatigue detection based on a single EEG channel[J]. Computational and Mathematical Methods in Medicine, 2017: 5109530. doi: 10.1155/2017/5109530
|
XIONG Yijun, GAO Junfeng, YANG Yong, et al. Classifying driving fatigue based on combined entropy measure using EEG signals[J]. International Journal of Control and Automation, 2016, 9(3): 329–338. doi: 10.14257/ijca
|
FU Rongrong, WANG Hong, and ZHAO Wenbo. Dynamic driver fatigue detection using hidden Markov model in real driving condition[J]. Expert Systems with Applications, 2016, 63: 397–411. doi: 10.1016/j.eswa.2016.06.042
|
LI Zuojin, LI S M, LI Renjie, et al. Online detection of driver fatigue using steering wheel angles for real driving conditions[J]. Sensors, 2017, 17(3): 495–508. doi: 10.3390/s17030495
|
王斐, 王少楠, 王惜慧, 等. 基于脑电图识别结合操纵特征的驾驶疲劳检测[J]. 仪器仪表学报, 2014, 35(2): 398–404.
WANG Fei, WANG Shaonan, WANG Xihui, et al. Driving fatigue detection based on EEG recognition and vehicle handling characteristics[J]. Chinese Journal of Scientific Instrument, 2014, 35(2): 398–404.
|
LI Zuojin, CHEN Liukui, PENG Jun, et al. Automatic detection of driver fatigue using driving operation information for transportation safety[J]. Sensors, 2017, 17(6): 1212–1222. doi: 10.3390/s17061212
|
ZHANG Qingchen, YANG L T, CHEN Zhikui, et al. A survey on deep learning for big data[J]. Information Fusion, 2018, 42: 146–157. doi: 10.1016/j.inffus.2017.10.006
|
HATCHER W G and YU Wei. A survey of deep learning: Platforms, applications and emerging research trends[J]. IEEE Access, 2018, 6: 24411–24432. doi: 10.1109/ACCESS.2018.2830661
|
DU Lihuan, LIU Wei, ZHENG Weilong, et al. Detecting driving fatigue with multimodal deep learning[C]. The 8th International IEEE/EMBS Conference on Neural Engineering (NER), Shanghai, China, 2017: 74–77. doi: 10.1109/NER.2017.8008295.
|
MAO Zijing, YAO Wanxiang, and HUANG Yufei. EEG-based biometric identification with deep learning[C]. The 8th International IEEE/EMBS Conference on Neural Engineering (NER), Shanghai, China, 2017: 609–612. doi: 10.1109/NER.2017.8008425.
|
WANG Haixian. Optimizing spatial filters for single-trial EEG classification via a discriminant extension to CSP: The Fisher criterion[J]. Medical & Biological Engineering & Computing, 2011, 49(9): 997–1001. doi: 10.1007/s11517-1-0766-7
|
CHUANG C H, KO L W, LIN Yuanpin, et al. Independent component ensemble of EEG for brain-computer interface[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22(2): 230–238. doi: 10.1109/TNSRE.2013.2293139
|
LI Mingyang, CHEN Wanzhong, and ZHANG Tao. Classification of epilepsy EEG signals using DWT-based envelope analysis and neural network ensemble[J]. Biomedical Signal Processing and Control, 2017, 31: 357–365. doi: 10.1016/j.bspc.2016.09.008
|
ZHENG Weilong and LU Baoliang. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks[J]. IEEE Transactions on Autonomous Mental Development, 2015, 7(3): 162–175. doi: 10.1109/TAMD.2015.2431497
|
ZHANG Benyu, JIANG Huiping, and DONG Linshan. Classification of EEG signal by WT-CNN model in emotion recognition system[C]. The 2017 IEEE 16th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), Oxford, UK, 2017: 109–114. doi: 10.1109/ICCI-CC.2017.8109738.
|
LEE H K and CHOI Y S. A convolution neural networks scheme for classification of motor imagery EEG based on wavelet time-frequecy image[C]. 2018 International Conference on Information Networking (ICOIN), Chiang Mai, Thailand, 2018: 906–909. doi: 10.1109/ICOIN.2018.8343254.
|
PAN S J and YANG Qiang. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345–1359. doi: 10.1109/TKDE.2009.191
|
YOSINSKI J, CLUNE J, BENGIO Y, et al. How transferable are features in deep neural networks?[C]. The 27th International Conference on Neural Information Processing Systems, Cambridge, USA, 2014: 3320–3328.
|
ZHENG Weilong, ZHU Jiayi, and LU Baoliang. Identifying stable patterns over time for emotion recognition from EEG[J]. IEEE Transactions on Affective Computing, 2017. doi: 10.1109/TAFFC.2017.2712143
|
THEJASWINI S, RAVI KUMAR K M, RUPALI S, et al. EEG Based Emotion Recognition Using Wavelets and Neural Networks Classifier[M]. GURUMOORTHY S, RAO B N K, GAO Xiaozhi. Cognitive Science and Artificial Intelligence: Advances and Applications. Singapore: Springer, 2018: 101–112.
|
TANG Hao, LIU Wei, ZHENG Weilong, et al.. Multimodal emotion recognition using deep neural networks[C]. The 24th International Conference on International Conference on International Conference on Neural Information Processing, Guangzhou, China, 2017: 811–819. doi: 10.1007/978-3-319-70093-9_86.
|