Advanced Search
Volume 41 Issue 9
Sep.  2019
Turn off MathJax
Article Contents
Fei WANG, Shichao WU, Shaolin LIU, Yahui ZHANG, Ying WEI. Driver Fatigue Detection Through Deep Transfer Learning in an Electroencephalogram-based System[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2264-2272. doi: 10.11999/JEIT180900
Citation: Fei WANG, Shichao WU, Shaolin LIU, Yahui ZHANG, Ying WEI. Driver Fatigue Detection Through Deep Transfer Learning in an Electroencephalogram-based System[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2264-2272. doi: 10.11999/JEIT180900

Driver Fatigue Detection Through Deep Transfer Learning in an Electroencephalogram-based System

doi: 10.11999/JEIT180900
Funds:  The Fundamental Research Funds for the Central Universities (N172608005), The Scientific Research Foundation for Public Welfare of Liaoning Province (20170021)
  • Received Date: 2018-09-20
  • Rev Recd Date: 2019-02-17
  • Available Online: 2019-03-21
  • Publish Date: 2019-09-10
  • ElectroEncephaloGram (EEG) is regarded as a " gold standard” of fatigue detection and drivers’ vigilance states can be detected through the analysis of EEG signals. However, due to the characteristics of non-linear, non-stationary and low spatial resolution of EEG signals, traditional machine learning methods still have the disadvantages of low recognition rate and complicated feature extraction operations in EEG-based fatigue detection task. To tackle this problem, a fatigue detection method with transfer learning based on the Electrode-Frequency Distribution Maps (EFDMs) of EEG signals is proposed. A deep convolutional neural network is designed and pre-trained with SEED dataset, and then it is used for fatigue detection with transfer learning strategy. Experimental results show that the proposed convolutional neural network can automatically obtain vigilance related features from EFDMs, and achieve much better recognition results than traditional machine learning methods. Moreover, based on the transfer learning strategy, this model can also be used for other recognition tasks, which is helpful for promoting the application of EEG signals to the driver fatigue detection system.
  • loading
  • 李刚. 基于脑功能网络的脑力疲劳检测技术及其形成机理研究[D]. [博士论文], 山东大学, 2017.

    LI Gang. Study on the mental fatigue detecting technology and its formation mechanism based on brain functional network[D]. [Ph. D. dissertation], Shandong University, 2017.
    BALANDONG R P, AHMAD R F, SAAD M N M, et al. A review on EEG-based automatic sleepiness detection systems for driver[J]. IEEE Access, 2018, 6: 22908–22919. doi: 10.1109/ACCESS.2018.2811723
    HU Jianfeng. Comparison of different features and classifiers for driver fatigue detection based on a single EEG channel[J]. Computational and Mathematical Methods in Medicine, 2017: 5109530. doi: 10.1155/2017/5109530
    XIONG Yijun, GAO Junfeng, YANG Yong, et al. Classifying driving fatigue based on combined entropy measure using EEG signals[J]. International Journal of Control and Automation, 2016, 9(3): 329–338. doi: 10.14257/ijca
    FU Rongrong, WANG Hong, and ZHAO Wenbo. Dynamic driver fatigue detection using hidden Markov model in real driving condition[J]. Expert Systems with Applications, 2016, 63: 397–411. doi: 10.1016/j.eswa.2016.06.042
    LI Zuojin, LI S M, LI Renjie, et al. Online detection of driver fatigue using steering wheel angles for real driving conditions[J]. Sensors, 2017, 17(3): 495–508. doi: 10.3390/s17030495
    王斐, 王少楠, 王惜慧, 等. 基于脑电图识别结合操纵特征的驾驶疲劳检测[J]. 仪器仪表学报, 2014, 35(2): 398–404.

    WANG Fei, WANG Shaonan, WANG Xihui, et al. Driving fatigue detection based on EEG recognition and vehicle handling characteristics[J]. Chinese Journal of Scientific Instrument, 2014, 35(2): 398–404.
    LI Zuojin, CHEN Liukui, PENG Jun, et al. Automatic detection of driver fatigue using driving operation information for transportation safety[J]. Sensors, 2017, 17(6): 1212–1222. doi: 10.3390/s17061212
    ZHANG Qingchen, YANG L T, CHEN Zhikui, et al. A survey on deep learning for big data[J]. Information Fusion, 2018, 42: 146–157. doi: 10.1016/j.inffus.2017.10.006
    HATCHER W G and YU Wei. A survey of deep learning: Platforms, applications and emerging research trends[J]. IEEE Access, 2018, 6: 24411–24432. doi: 10.1109/ACCESS.2018.2830661
    DU Lihuan, LIU Wei, ZHENG Weilong, et al. Detecting driving fatigue with multimodal deep learning[C]. The 8th International IEEE/EMBS Conference on Neural Engineering (NER), Shanghai, China, 2017: 74–77. doi: 10.1109/NER.2017.8008295.
    MAO Zijing, YAO Wanxiang, and HUANG Yufei. EEG-based biometric identification with deep learning[C]. The 8th International IEEE/EMBS Conference on Neural Engineering (NER), Shanghai, China, 2017: 609–612. doi: 10.1109/NER.2017.8008425.
    WANG Haixian. Optimizing spatial filters for single-trial EEG classification via a discriminant extension to CSP: The Fisher criterion[J]. Medical & Biological Engineering & Computing, 2011, 49(9): 997–1001. doi: 10.1007/s11517-1-0766-7
    CHUANG C H, KO L W, LIN Yuanpin, et al. Independent component ensemble of EEG for brain-computer interface[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22(2): 230–238. doi: 10.1109/TNSRE.2013.2293139
    LI Mingyang, CHEN Wanzhong, and ZHANG Tao. Classification of epilepsy EEG signals using DWT-based envelope analysis and neural network ensemble[J]. Biomedical Signal Processing and Control, 2017, 31: 357–365. doi: 10.1016/j.bspc.2016.09.008
    ZHENG Weilong and LU Baoliang. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks[J]. IEEE Transactions on Autonomous Mental Development, 2015, 7(3): 162–175. doi: 10.1109/TAMD.2015.2431497
    ZHANG Benyu, JIANG Huiping, and DONG Linshan. Classification of EEG signal by WT-CNN model in emotion recognition system[C]. The 2017 IEEE 16th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), Oxford, UK, 2017: 109–114. doi: 10.1109/ICCI-CC.2017.8109738.
    LEE H K and CHOI Y S. A convolution neural networks scheme for classification of motor imagery EEG based on wavelet time-frequecy image[C]. 2018 International Conference on Information Networking (ICOIN), Chiang Mai, Thailand, 2018: 906–909. doi: 10.1109/ICOIN.2018.8343254.
    PAN S J and YANG Qiang. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345–1359. doi: 10.1109/TKDE.2009.191
    YOSINSKI J, CLUNE J, BENGIO Y, et al. How transferable are features in deep neural networks?[C]. The 27th International Conference on Neural Information Processing Systems, Cambridge, USA, 2014: 3320–3328.
    ZHENG Weilong, ZHU Jiayi, and LU Baoliang. Identifying stable patterns over time for emotion recognition from EEG[J]. IEEE Transactions on Affective Computing, 2017. doi: 10.1109/TAFFC.2017.2712143
    THEJASWINI S, RAVI KUMAR K M, RUPALI S, et al. EEG Based Emotion Recognition Using Wavelets and Neural Networks Classifier[M]. GURUMOORTHY S, RAO B N K, GAO Xiaozhi. Cognitive Science and Artificial Intelligence: Advances and Applications. Singapore: Springer, 2018: 101–112.
    TANG Hao, LIU Wei, ZHENG Weilong, et al.. Multimodal emotion recognition using deep neural networks[C]. The 24th International Conference on International Conference on International Conference on Neural Information Processing, Guangzhou, China, 2017: 811–819. doi: 10.1007/978-3-319-70093-9_86.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (3483) PDF downloads(252) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return