Advanced Search
Volume 41 Issue 9
Sep.  2019
Turn off MathJax
Article Contents
Lun TANG, Yu ZHOU, Youchao YANG, Guofan ZHAO, Qianbin CHEN. Virtual Network Function Dynamic Deployment Algorithm Based on Prediction for 5G Network Slicing[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2071-2078. doi: 10.11999/JEIT180894
Citation: Lun TANG, Yu ZHOU, Youchao YANG, Guofan ZHAO, Qianbin CHEN. Virtual Network Function Dynamic Deployment Algorithm Based on Prediction for 5G Network Slicing[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2071-2078. doi: 10.11999/JEIT180894

Virtual Network Function Dynamic Deployment Algorithm Based on Prediction for 5G Network Slicing

doi: 10.11999/JEIT180894
Funds:  The National Natural Science Foundation of China (61571073)
  • Received Date: 2018-09-18
  • Rev Recd Date: 2019-02-20
  • Available Online: 2019-03-21
  • Publish Date: 2019-09-10
  • In order to solve the unreasonable virtual resource allocation caused by the dynamic change of service request and delay of information feedback in wireless virtualized network, a traffic-aware algorithm which exploits historical Service Function Chaining (SFC) queue information to predict future load state based on Long Short-Term Memory (LSTM) network is proposed. With the prediction results, the Virtual Network Function (VNF) deployment and the corresponding computing resource allocation problems are studied, and a VNFs’ deployment method based on Maximum and Minimum Ant Colony Algorithm (MMACA) is developed. On the premise of satisfying the minimum resource demand for future queue non-overflow, the on-demand allocation method is used to maximize the computing resource utilization. Simulation results show that the prediction model based on LSTM neural network in this paper obtains good prediction results and realizes online monitoring of the network. The Maximum and Minimum Ant Colony Algorithm based VNF deployment method reduces effectively the bit loss rate and the average end-to-end delay caused by overall VNFs’ scheduling at the same time.
  • loading
  • MAHMOOD N H, LAURIDSEN M, BERARDINELLI G, et al. Radio resource management techniques for eMBB and mMTC services in 5G dense small cell scenarios[C]. IEEE 84th Vehicular Technology Conference, Montreal, Canada, 2016: 1–5.
    VASSILARAS S, GKATZIKIS L, LIAKOPOULOS N, et al. The algorithmic aspects of network slicing[J]. IEEE Communications Magazine, 2017, 55(8): 112–119. doi: 10.1109/MCOM.2017.1600939
    HERRERA J G and BOTERO J F. Resource allocation in NFV: A comprehensive survey[J]. IEEE Transactions on Network & Service Management, 2016, 13(3): 518–532. doi: 10.1109/TNSM.2016.2598420
    SALLENT O, PEREZ-ROMERO J, FERRUS R, et al. On radio access network slicing from a radio resource management perspective[J]. IEEE Wireless Communications, 2017, 24(5): 166–174. doi: 10.1109/MWC.2017.1600220WC
    LONG Q, ASSI C, and SHABAN K. Delay-aware scheduling and resource optimization with network function virtualization[J]. IEEE Transactions on Communications, 2016, 64(9): 3746–3758. doi: 10.1109/TCOMM.2016.2580150
    HUANG Huang, GUO Song, WU Jinsong, et al. Service chaining for hybrid network function[J]. IEEE Transactions on Cloud Computing, 2017. doi: 10.1109/TCC.2017.2721401
    ZHU Qixuan and ZHANG Xi. Game-theory based buffer-space and transmission-rate allocations for optimal energy-efficiency over wireless virtual networks[C]. IEEE Global Communications Conference, San Diego, USA, 2015: 1–6.
    FENG Qiu, ZHANG Bin, and GUO Jun. A deep learning approach for VM workload prediction in the cloud[C]. 201617th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), Shanghai, China, 2016: 319–324.
    MIJUMBI R, HASIJA S, DAVY S, et al. Topology-aware prediction of virtual network function resource requirements[J]. IEEE Transactions on Network & Service Management, 2017, 14(1): 106–120. doi: 10.1109/TNSM.2017.2666781
    AGARWAL S, MALANDRINO F, CHIASSERINI C, et al. Joint VNF placement and CPU allocation in 5G[C]. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, Honolulu, USA, 2018: 1943–1951.
    ZHANG Haijun, LIU Na, CHU Xiaoli, et al. Network slicing based 5G and future mobile networks: mobility, resource management, and challenges[J]. IEEE Communications Magazine, 2017, 55(8): 138–145. doi: 10.1109/MCOM.2017.1600940
    YANG Jian, ZHANG Shuben, WU Xiaomin, et al. Online learning-based server provisioning for electricity cost reduction in data center[J]. IEEE Transactions on Control Systems Technology, 2017, 25(3): 1044–1051. doi: 10.1109/TCST.2016.2575801
    CHENG Aolin, LI Jian, YU Yuling, et al. Delay-sensitive user scheduling and power control in heterogeneous networks[J]. IET Networks, 2015, 4(3): 175–184. doi: 10.1049/iet-net.2014.0026
    GLOROT X and BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[J]. Journal of Machine Learning Research, 2010, 9: 249–256.
    唐伦, 杨希希, 施颖洁, 等. 无线虚拟网络中基于自回归滑动平均预测的在线自适应虚拟资源分配算法[J]. 电子与信息学报, 2019, 41(1): 16–23. doi: 10.11999/JEIT180048

    TANG Lun, YANG Xixi, SHI Yingjie, et al. ARMA-prediction based online adaptive dynamic resource allocation in wireless virtualized networks[J]. Journal of Electronics &Information Technology, 2019, 41(1): 16–23. doi: 10.11999/JEIT180048
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (5205) PDF downloads(162) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return