Advanced Search
Volume 41 Issue 9
Sep.  2019
Turn off MathJax
Article Contents
Yan WANG, Gaina XUE, Shunbo LI, Feifei HUI. The Linear Complexity of a New Class of Generalized Cyclotomic Sequence of Order q with Period 2pm[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2151-2155. doi: 10.11999/JEIT180884
Citation: Yan WANG, Gaina XUE, Shunbo LI, Feifei HUI. The Linear Complexity of a New Class of Generalized Cyclotomic Sequence of Order q with Period 2pm[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2151-2155. doi: 10.11999/JEIT180884

The Linear Complexity of a New Class of Generalized Cyclotomic Sequence of Order q with Period 2pm

doi: 10.11999/JEIT180884
Funds:  The National Natural Science Foundation of China (11471255), The Natural Science Project of Xi’an University of Architecture and Technology (1609718034), The Talent Fund of Xi’an University of Architecture and Technology (RC1338)
  • Received Date: 2018-09-18
  • Rev Recd Date: 2019-06-06
  • Available Online: 2019-06-28
  • Publish Date: 2019-09-10
  • Based on the theory of Ding - generalized circle, a new class of generalized cyclotomic sequences of $ 2{p^m}$ ($ p$ odd prime and m>1) with arbitrary prime order is constructed in this paper. The polynomial cyclotomic classes are analysed by algebra number theory method. Moreover, the linear complexity of the new sequences are determined, which losely related to the division of quadratic residual classes and quadratic non-residual classes. Results show that the linear complexity of this kind of sequence is much larger than half of the period, hence, can fight Berlekamp-Massey’s security application attack that is a pseudo-random sequence with good properties in the sense of cryptography.
  • loading
  • GOLOMB S W and GONG Guang. Signal Design for Good Correlation: For Wireless Communication, Cryptography and Radar[M]. Cambridge: Cambridge University Press, 2005: 174–175.
    DING Cunsheng. Linear complexity of generalized cyclotomic binary sequences of order 2[J]. Finite Fields and Their Applications, 1997, 3(2): 159–174. doi: 10.1006/ffta.1997.0181
    DING Cunsheng, HESSESETH T, and SHAN Weijuan. On the linear complexity of Legendre sequences[J]. IEEE Transactions on Information Theory, 1998, 44(3): 1276–1278. doi: 10.1109/18.669398
    BAI Enjian, LIU Xiaojuan, and XIAO Guozhen. Linear complexity of new generalized cyclotomic sequences of order two of length pq[J]. IEEE Transactions on Information Theory, 2005, 51(5): 1849–1853. doi: 10.1109/TIT.2005.846450
    YAN Tongjiang, LI Shengqiang, and XIAO Guozhen. On the linear complexity of generalized cyclotomic sequences with the period p m[J]. Applied Mathematics Letters, 2008, 21(2): 187–193. doi: 10.1016/j.aml.2007.03.011
    DU Xiaoni, YAN Tongjiang, and XIAO Guozhen. Trace representation of some generalized cyclotomic sequences of length pq[J]. Information Sciences, 2008, 178(16): 3307–3316. doi: 10.1016/j.ins.2007.11.023
    魏万银, 杜小妮, 王国辉. 周期为2pq的四元序列线性复杂度研究[J]. 计算机工程, 2016, 42(3): 161–164. doi: 10.3969/j.issn.1000-3428.2016.03.029

    WEI Wanyin, DU Xiaoni, and WANG Guohui. Research on linear complexity of quaternary sequences with period 2pq[J]. Computer Engineering, 2016, 42(3): 161–164. doi: 10.3969/j.issn.1000-3428.2016.03.029
    杜小妮, 王国辉, 魏万银. 周期为2p2的四阶二元广义分圆序列的线性复杂度[J]. 电子与信息学报, 2015, 37(10): 2490–2494. doi: 10.11999/JEIT150180

    DU Xiaoni, WANG Guohui, and WEI Wanyin. Linear complexity of binary generalized cyclotomic sequences of order four with period 2p2[J]. Journal of Electronics &Information Technology, 2015, 37(10): 2490–2494. doi: 10.11999/JEIT150180
    HU Liqin, YU Qin, and WANG Minhong. The linear complexity of Whiteman’s generalized cyclotomic sequences of period $ {p^{m + 1}}{q^{n + 1}}$ [J]. IEEE Transactions on Information Theory, 2012, 58(8): 5534–5543. doi: 10.1109/TIT.2012.2196254
    ZHANG Jingwei, ZHAO Chang’an, and MA Xiao. Linear complexity of generalized cyclotomic binary sequences of length 2p m[J]. Applicable Algebra in Engineering, Communication and Computing, 2010, 21(2): 93–108. doi: 10.1007/s00200-009-0116-2
    TAN Lin, XU Hong, and QI Wenfeng. Remarks on the generalized cyclotomic sequences of length 2p m[J]. Applicable Algebra in Engineering, Communication and Computing, 2012, 23(5/6): 221–232. doi: 10.1007/s00200-012-0177-5
    KE Pinhui, ZHANG Jie, and ZHANG Shengyuan. On the linear complexity and the autocorrelation of generalized cyclotomic binary sequences of length 2p n[J]. Designs, Codes and Cryptography, 2013, 67(3): 325–339. doi: 10.1007/s10623-012-9610-9
    EDEMSKIY V and ANTONOVA O. The linear complexity of generalized cyclotomic sequences with period 2p n[J]. Applicable Algebra in Engineering, Communication and Computing, 2014, 25(3): 213–223. doi: 10.1007/s00200-014-0223-6
    EDEMSKIY V. About computation of the linear complexity of generalized cyclotomic sequences with period p n+1[J]. Designs, Codes and Cryptography, 2011, 61(3): 251–260. doi: 10.1007/s10623-010-9474-9
    刘龙飞, 杨凯, 杨晓元. 新的周期为p m的GF(h)上广义割圆序列的线性复杂度[J]. 通信学报, 2017, 38(9): 39–45. doi: 10.11959/j.issn.1000-436x.2017181

    LIU Longfei, YANG Kai, and YANG Xiaoyuan. On the linear complexity of a new generalized cyclotomic sequence with length p m over GF(h)[J]. Journal on Communications, 2017, 38(9): 39–45. doi: 10.11959/j.issn.1000-436x.2017181
    XIAO Zibi, ZENG Xiangyong, LI Chunlei, et al. New generalized cyclotomic binary sequences of period p2[J]. Designs, Codes and Cryptography, 2018, 86(7): 1483–1497. doi: 10.1007/s10623-017-0408-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2128) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return