Advanced Search
Volume 41 Issue 11
Nov.  2019
Turn off MathJax
Article Contents
Julong LAN, Changhe YU, Yuxiang HU, Ziyong LI. A SDN Routing Optimization Mechanism Based on Deep Reinforcement Learning[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2669-2674. doi: 10.11999/JEIT180870
Citation: Julong LAN, Changhe YU, Yuxiang HU, Ziyong LI. A SDN Routing Optimization Mechanism Based on Deep Reinforcement Learning[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2669-2674. doi: 10.11999/JEIT180870

A SDN Routing Optimization Mechanism Based on Deep Reinforcement Learning

doi: 10.11999/JEIT180870
Funds:  The National Natural Science Foundation of China for Innovative Research Groups (61521003), The National Natural Science Foundation of China (61502530)
  • Received Date: 2018-09-06
  • Rev Recd Date: 2019-05-12
  • Available Online: 2019-05-27
  • Publish Date: 2019-11-01
  • In order to achieve routing optimization in the Software Defined Network (SDN) environment, deep reinforcement learning is imposed to the SDN routing process and a mechanism based on deep reinforcement learning is proposed to optimize routing. This mechanism can improve network performance such as delay, throughput, and realize black-box optimization in continuous time, which surely reduces network operation and maintenance costs. Besides, the proposed routing optimization mechanism is evaluated through a series of experiments. The experimental results show that the proposed SDN routing optimization mechanism has good convergence and effectiveness, and can provide better routing configurations and performance stability than traditional routing protocols.
  • loading
  • BOUTABA R, SALAHUDDIN M A, LIMAM N, et al. A comprehensive survey on machine learning for networking: Evolution, applications and research opportunities[J]. Journal of Internet Services and Applications, 2018, 9(1): 16. doi: 10.1186/s13174-018-0087-2
    FADLULLAH Z M, TANG Fengxiao, MAO Bomin, et al. State-of-the-art deep learning: Evolving machine intelligence toward tomorrow’s intelligent network traffic control systems[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2432–2455. doi: 10.1109/COMST.2017.2707140
    LI Wei, LI Guojun, and YU Xiufen. A fast traffic classification method based on SDN network[C]. The 4th International Conference on Electronics, Communications and Networks, Beijing, China, 2015: 223–229.
    WANG Fu, LIU Bo, ZHANG Lijia, et al. Dynamic routing and spectrum assignment based on multilayer virtual topology and ant colony optimization in elastic software-defined optical networks[J]. Optical Engineering, 2017, 56(7): 076111. doi: 10.1117/1.OE.56.7.076111
    PARSAEI M R, MOHAMMADI R, and JAVIDAN R. A new adaptive traffic engineering method for telesurgery using ACO algorithm over Software Defined Networks[J]. European Research in Telemedicine, 2017, 6(3/4): 173–180. doi: 10.1016/j.eurtel.2017.10.003
    WANG Junchao, DE LAAT C, and ZHAO Zhiming. QoS-aware virtual SDN network planning[C]. 2017 IFIP/IEEE Symposium on Integrated Network and Service Management, Lisbon, Portugal, 2017: 644–647. doi: 10.23919/INM.2017.7987350.
    LIN S C, AKYILDIZ I F, WANG Pu, et al. QoS-aware adaptive routing in multi-layer hierarchical software defined networks: a reinforcement learning approach[C]. 2016 IEEE International Conference on Services Computing, San Francisco, USA, 2016: 25–33. doi: 10.1109/SCC.2016.12.
    JIANG Jingyan, HU Liang, HAO Pingting, et al. Q-FDBA: Improving QoE fairness for video streaming[J]. Multimedia Tools and Applications, 2018, 77(9): 10787–10806. doi: 10.1007/s11042-017-4917-1
    SUTTON R S and BARTO A G. Reinforcement Learning: An Introduction[M]. Cambridge, MA: The MIT Press, 1988.
    SENDRA S, REGO A, LLORET J, et al. Including artificial intelligence in a routing protocol using Software Defined Networks[C]. 2017 IEEE International Conference on Communications Workshops, Paris, France, 2017: 670–674. doi: 10.1109/ICCW.2017.7962735.
    MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529–533. doi: 10.1038/nature14236
    LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[P]. USA, Patent, WO2017019555, 2017.
    MESTRES A, RODRIGUEZ-NATAL A, CARNER J, et al. Knowledge-defined networking[J]. ACM SIGCOMM Computer Communication Review, 2017, 47(3): 2–10. doi: 10.1145/3138808.3138810
    SILVER D, LEVER G, HEESS N, et al. Deterministic policy gradient algorithms[C]. International Conference on Machine Learning, Beijing, China, 2014: I-387–I-395.
    VARGA A and HORNIG R. An overview of the OMNeT++ simulation environment[C]. The 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops, Marseille, France, 2008: 60.
    ROUGHAN M. Simplifying the synthesis of internet traffic matrices[J]. ACM SIGCOMM Computer Communication Review, 2005, 35(5): 93–96. doi: 10.1145/1096536.1096551
    PAN S J and YANG Qiang. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345–1359. doi: 10.1109/TKDE.2009.191
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (5712) PDF downloads(253) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return