Advanced Search
Volume 41 Issue 10
Oct.  2019
Turn off MathJax
Article Contents
Yongsheng ZHAO, Dexiu HU, Zhixin LIU, Yongjun ZHAO, Chuang ZHAO. Coherent Integration Algorithm Based on Adjacent Cross Correlation Function-Parameterized Centroid Frequency-Chirp Rate Distribution -Keystone Transform for Maneuvering Target in Passive Radar[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2358-2365. doi: 10.11999/JEIT180858
Citation: Yongsheng ZHAO, Dexiu HU, Zhixin LIU, Yongjun ZHAO, Chuang ZHAO. Coherent Integration Algorithm Based on Adjacent Cross Correlation Function-Parameterized Centroid Frequency-Chirp Rate Distribution -Keystone Transform for Maneuvering Target in Passive Radar[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2358-2365. doi: 10.11999/JEIT180858

Coherent Integration Algorithm Based on Adjacent Cross Correlation Function-Parameterized Centroid Frequency-Chirp Rate Distribution -Keystone Transform for Maneuvering Target in Passive Radar

doi: 10.11999/JEIT180858
Funds:  The National Natural Science Foundation of China (61703433)
  • Received Date: 2018-09-03
  • Rev Recd Date: 2019-08-01
  • Available Online: 2019-08-21
  • Publish Date: 2019-10-01
  • Increasing the integration time can effectively improve the detection performance of passive radar. However, for maneuvering targets, the complex motions, such as high velocity, acceleration and jerk, cause existing detection methods to suffer the Range Migration (RM) and Doppler Frequency Migration (DFM) during the integration time, which deteriorates the detection performance. This paper addresses the long time coherent integration for a maneuvering target with high-order motion (e.g., jerk motion) in passive radar systems. A method based on Adjacent Cross Correlation Function (ACCF), Parameterized Centroid Frequency-Chirp Rate Distribution (PCFCRD) and Keystone Transform (KT)(ACCF-PCFCRD-KT), is proposed. Firstly, the signal model for the maneuvering targets is given, and the influence of the target velocity, acceleration and jerk on the coherent integration is analyzed. For the Doppler curvature induced by the jerk motion, the ACCF is firstly applied to reducing the order of RM and DFM. Then the PCFCRD operation is employed to estimate the acceleration and jerk parameters. After compensating the RM and DFM caused by the acceleration and jerk, the RM arising from the velocity is corrected via the KT operation and the target echo energy is coherently integrated. Simulation results demonstrate that the proposed method can effectively compensate the RM and DFM caused by the target motion parameters in passive radar, and for a maneuvering target with jerk motion, the proposed method achieves better integration performance over the existing methods.
  • loading
  • ZAIMBASHI A. Target detection in analog terrestrial TV-based passive radar sensor: joint delay-Doppler estimation[J]. IEEE Sensors Journal, 2017, 17(17): 5569–5580. doi: 10.1109/JSEN.2017.2725822
    ZHAO Yongsheng, ZHAO Yongjun, and ZHAO Chuang. A novel algebraic solution for moving target localization in multi-transmitter multi-receiver passive radar[J]. Signal Processing, 2018, 143: 303–310. doi: 10.1016/j.sigpro.2017.09.014
    WANG Yasen, BAO Qinglong, WANG Dinghe, et al. An experimental study of passive bistatic radar using uncooperative radar as a transmitter[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1868–1872. doi: 10.1109/LGRS.2015.2432574
    OLSEN K E and ASEN W. Bridging the gap between civilian and military passive radar[J]. IEEE Aerospace and Electronic Systems Magazine, 2017, 32(2): 4–12. doi: 10.1109/MAES.2017.160030
    GASSIER G, CHABRIEL G, BARRÈRE J, et al. A unifying approach for disturbance cancellation and target detection in passive radar using OFDM[J]. IEEE Transactions on Signal Processing, 2016, 64(22): 5959–5971. doi: 10.1109/TSP.2016.2600511
    COLONE F, O'HAGAN D W, LOMBARDO P, et al. A multistage processing algorithm for disturbance removal and target detection in passive bistatic radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 698–722. doi: 10.1109/TAES.2009.5089551
    HIGGINS T, WEBSTER T, and MOKOLE E L. Passive multistatic radar experiment using WiMAX signals of opportunity. Part 1: Signal processing[J]. IET Radar, Sonar & Navigation, 2016, 10(2): 238–247. doi: 10.1049/iet-rsn.2015.0020
    ZHU Daiyin, LI Yong, and ZHU Zhaoda. A Keystone transform without interpolation for SAR ground moving-target imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 18–22. doi: 10.1109/LGRS.2006.882147
    YU Ji, XU Jia, PENG Yingning, et al. Radon-Fourier transform for radar target detection (III): Optimality and fast implementations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 991–1004. doi: 10.1109/TAES.2012.6178044
    RAO Xuan, TAO Haihong, SU Jia, et al. Detection of constant radial acceleration weak target via IAR-FRFT[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 3242–3253. doi: 10.1109/TAES.2015.140739
    LI Xiaolong, CUI Guolong, YI Wei, et al. Radar maneuvering target detection and motion parameter estimation based on TRT-SGRFT[J]. Signal Processing, 2017, 133: 107–116. doi: 10.1016/j.sigpro.2016.10.014
    MALANOWSKI M. Detection and parameter estimation of manoeuvring targets with passive bistatic radar[J]. IET Radar, Sonar & Navigation, 2012, 6(8): 739–745. doi: 10.1049/iet-rsn.2012.0072
    关欣, 胡东辉, 仲利华, 等. 一种高效的外辐射源雷达高径向速度目标实时检测方法[J]. 电子与信息学报, 2013, 35(3): 581–588. doi: 10.3724/SP.J.1146.2012.00903

    GUAN Xin, HU Donghui, ZHONG Lihua, et al. An effective real-time target detection algorithm for high radial speed targets in passive radar[J]. Journal of Electronics &Information Technology, 2013, 35(3): 581–588. doi: 10.3724/SP.J.1146.2012.00903
    杨金禄, 单涛, 陶然. 数字电视辐射源雷达的相参积累徙动补偿方法[J]. 电子与信息学报, 2011, 33(2): 407–411. doi: 10.3724/SP.J.1146.2010.00414

    YANG Jinlu, SHAN Tao, and TAO Ran. Method of migration compensation in coherent integration for digital TV based passive radar[J]. Journal of Electronics &Information Technology, 2011, 33(2): 407–411. doi: 10.3724/SP.J.1146.2010.00414
    杨宇翔, 同武勤, 熊瑾煜. 一种无源雷达高速机动目标检测新方法[J]. 电子与信息学报, 2014, 36(12): 3008–3013. doi: 10.3724/SP.J.1146.2013.01984

    YANG Yuxiang, TONG Wuqin, and XIONG Jinyu. A novel algorithm for detection of a maneuvering target in passive radar[J]. Journal of Electronics &Information Technology, 2014, 36(12): 3008–3013. doi: 10.3724/SP.J.1146.2013.01984
    XU Jia, ZHOU Xu, QIAN Lichang, et al. Hybrid integration for highly maneuvering radar target detection based on generalized radon-fourier transform[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(5): 2554–2561. doi: 10.1109/TAES.2016.150076
    LI Yachao, XING Mengdao, SU Junhai, et al. A new algorithm of ISAR imaging for maneuvering targets with low SNR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 543–557. doi: 10.1109/TAES.2013.6404119
    LI Xiaolong, CUI Guolong, YI Wei, et al. A fast maneuvering target motion parameters estimation algorithm based on ACCF[J]. IEEE Signal Processing Letters, 2015, 22(3): 270–274. doi: 10.1109/LSP.2014.2358230
    ZHENG Jibin, LIU Hongwei, and LIU Qinghuo. Parameterized centroid frequency-chirp rate distribution for LFM signal analysis and mechanisms of constant delay introduction[J]. IEEE Transactions on Signal Processing, 2017, 65(24): 6435–6446. doi: 10.1109/TSP.2017.2755604
    MALANOWSKI M, KULPA K, KULPA J, et al. Analysis of detection range of FM-based passive radar[J]. IET Radar, Sonar & Navigation, 2014, 8(2): 153–159. doi: 10.1049/iet-rsn.2013.0185
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (2272) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return