Citation: | Zhengyi LIU, Tianze XU. RGB-D Saliency Detection Based on Optimized ELM and Depth Level[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2224-2230. doi: 10.11999/JEIT180826 |
GOFERMAN S, ZELNIK-MANOR L, and TAL A. Context-aware saliency detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10): 1915–1926. doi: 10.1109/TPAMI.2011.272
|
ROTHER C, KOLMOGOROV V, and BLAKE A. "GrabCut": Interactive foreground extraction using iterated graph cuts[J]. ACM Transactions on Graphics, 2004, 23(3): 309–314. doi: 10.1145/1015706.1015720
|
DING Yuanyuan, XIAO Jing, and YU Jingyi. Importance filtering for image retargeting[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, USA, 2011: 89–96.
|
MAHADEVAN V and VASCONCELOS N. Saliency-based discriminant tracking[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 1007–1013.
|
SIAGIAN C and ITTI L. Rapid biologically-inspired scene classification using features shared with visual attention[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(2): 300–312. doi: 10.1109/TPAMI.2007.40
|
YANG Chuan, ZHANG Lihe, LU Huchuan, et al. Saliency detection via graph-based manifold ranking[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 3166–3173.
|
TONG Na, LU Huchuan, RUAN Xiang, et al. Salient object detection via bootstrap learning[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1884–1892.
|
PERAZZI F, KRÄHENBÜHL P, PRITCH Y, et al. Saliency filters: Contrast based filtering for salient region detection[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 733–740.
|
CHENG Mingming, MITRA N J, HUANG Xiaolei, et al. Global contrast based salient region detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 569–582. doi: 10.1109/TPAMI.2014.2345401
|
KLEIN D A and FRINTROP S. Center-surround divergence of feature statistics for salient object detection[C]. 2011 IEEE International Conference on Computer Vision, Barcelona, Spain, 2011: 2214–2219.
|
PENG Houwei, LI Bing, XIONG Weihua, et al. RGBD Salient Object Detection: A Benchmark and Algorithms[M]. FLEET D, PAJDLA T, SCHIELE B, et al. Computer Vision - ECCV 2014. Cham: Springer, 2014: 92–109.
|
ZHANG Pingping, WANG Dong, LU Huchuan, et al. Learning uncertain convolutional features for accurate saliency detection[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 212–221.
|
XUE Haoyang, GU Yun, LI Yijun, et al. RGB-D saliency detection via mutual guided manifold ranking[C]. 2015 IEEE International Conference on Image Processing, Quebec City, Canada, 2015: 666–670.
|
ZHANG Lu, LIU Jianhua, and LU Huchuan. Saliency detection via extreme learning machine[J]. Neurocomputing, 2016, 218: 103–112. doi: 10.1016/j.neucom.2016.08.066
|
LI Guanbin and YU Yizhou. Visual saliency based on multiscale deep features[C]. 2015 IEEE Computer Vision and Pattern Recognition, Boston, USA, 2015: 5455–5463.
|
FENG D, BARNES N, YOU Shaodi, et al. Local background enclosure for RGB-D salient object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2343–2350.
|
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
|
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587.
|
DONAHUE J, JIA Yangqing, VINYALS O, et al. DeCAF: A deep convolutional activation feature for generic visual recognition[C]. The 31st International Conference on International Conference on Machine Learning, Beijing, China, 2014: 647–655.
|
RAZAVIAN A S, AZIZPOUR H, SULLIVAN J, et al. CNN features off-the-shelf: An astounding baseline for recognition[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, USA, 2014: 806–813.
|
GUO Jingfang, REN Tongwei, HUANG Lei, et al. Saliency detection on sampled images for tag ranking[J]. Multimedia Systems, 2019, 25(1): 35–47. doi: 10.1007/s00530-017-0546-9
|
TONG Na, LU Huchuan, ZHANG Lihe, et al. Saliency detection with multi-scale superpixels[J]. IEEE Signal Processing Letters, 2014, 21(9): 1035–1039. doi: 10.1109/LSP.2014.2323407
|
HUANG Guangbin. What are extreme learning machines? Filling the gap between frank Rosenblatt’s dream and john von Neumann’s puzzle[J]. Cognitive Computation, 2015, 7(3): 263–278. doi: 10.1007/s12559-015-9333-0
|
CAO Weipeng, MING Zhong, WANG Xizhao, et al. Improved bidirectional extreme learning machine based on enhanced random search[J]. Memetic Computing, 2019, 11(1): 19–26. doi: 10.1007/s12293-017-0238-1
|
ESHTAY M, FARIS H, and OBEID N. Improving extreme learning machine by competitive swarm optimization and its application for medical diagnosis problems[J]. Expert Systems with Applications, 2018, 104: 134–152. doi: 10.1016/j.eswa.2018.03.024
|
BOYKOV Y, VEKSLER O, and ZABIH R. Fast approximate energy minimization via graph cuts[C]. The 7th IEEE International Conference on Computer Vision, Kerkyra, Greece, 1999: 377–384.
|
LIU Shuang, ZHANG Zhong, XIAO Baihua, et al. Ground-based cloud detection using automatic graph cut[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(6): 1342–1346. doi: 10.1109/LGRS.2015.2399857
|
YU Kai, CHEN Xinjian, SHI Fei, et al. A novel 3D graph cut based co-segmentation of lung tumor on PET-CT images with Gaussian mixture models[J]. SPIE, 2016, 9784: 97842V.
|
JU Ran, GE Ling, GENG Wenjing, et al. Depth saliency based on anisotropic center-surround difference[C]. 2014 IEEE International Conference on Image Processing, Paris, France, 2014: 1115–1119.
|
CHENG Yupeng, FU Huazhu, WEI Xingxing, et al. Depth enhanced saliency detection method[C]. International Conference on Internet Multimedia Computing and Service, Xiamen, China, 2014.
|
REN Jianqiang, GONG Xiaojin, YU Lu, et al. Exploiting global priors for RGB-D saliency detection[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, USA, 2015: 25–32.
|