Advanced Search
Volume 41 Issue 7
Jul.  2019
Turn off MathJax
Article Contents
Hongtao YU, Yuehang DING, Shuxin LIU, Ruiyang HUANG, Yunjie GU. Eliminating Structural Redundancy Based on Super-node Theory[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1633-1640. doi: 10.11999/JEIT180793
Citation: Hongtao YU, Yuehang DING, Shuxin LIU, Ruiyang HUANG, Yunjie GU. Eliminating Structural Redundancy Based on Super-node Theory[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1633-1640. doi: 10.11999/JEIT180793

Eliminating Structural Redundancy Based on Super-node Theory

doi: 10.11999/JEIT180793
Funds:  The National Natural Science Foundation of China (61521003, 61803384)
  • Received Date: 2018-08-09
  • Rev Recd Date: 2019-02-25
  • Available Online: 2019-03-04
  • Publish Date: 2019-07-01
  • Ontology, as the superstructure of knowledge graph, has great significance in knowledge graph domain. In general, structural redundancy may arise in ontology evolution. Most of existing redundancy elimination algorithms focus on transitive redundancies while ignore equivalent relations. Focusing on this problem, a redundancy elimination algorithm based on super-node theory is proposed. Firstly, the nodes equivalent to each other are considered as a super-node to transfer the ontology into a directed acyclic graph. Thus the redundancies relating to transitive relations can be eliminated by existing methods. Then equivalent relations are restored, and the redundancies between equivalent and transitive relations are eliminated. Experiments on both synthetic dynamic networks and real networks indicate that the proposed algorithm can detect redundant relations precisely, with better performance and stability compared with the benchmarks.
  • loading
  • 刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3): 582–600. doi: 10.7544/issn1000-1239.2016.20148228

    LIU Qiao, LI Yang, DUAN Hong, et al. Knowledge graph construction techniques[J]. Journal of Computer Research and Development, 2016, 53(3): 582–600. doi: 10.7544/issn1000-1239.2016.20148228
    BORO D and BHUYAN Z. A game for shared ontology evolution[C]. Proceedings of the International Conference on Computing and Communication Systems, Shillong, India, 2018: 95–101.
    刘树新, 季新生, 刘彩霞, 等. 局部拓扑信息耦合促进网络演化[J]. 电子与信息学报, 2016, 38(9): 2180–2187. doi: 10.11999/JEIT151338

    LIU Shuxin, JI Xinsheng, LIU Caixia, et al. Information coupling of local topology promoting the network evolution[J]. Journal of Electronics &Information Technology, 2016, 38(9): 2180–2187. doi: 10.11999/JEIT151338
    XING Guangming, ZHANG Guoqiang, and CUI Licong. FEDRR: Fast, exhaustive detection of redundant hierarchical relations for quality improvement of large biomedical ontologies[J]. BioData Mining, 2016, 9: 31–42. doi: 10.1186/s13040-016-0110-8
    DENTLER K and CORNET R. Intra-axiom redundancies in SNOMED CT[J]. Artificial Intelligence in Medicine, 2015, 65(1): 29–34. doi: 10.1016/j.artmed.2014.10.003
    于娟, 熊振辉, 欧忠辉. 基于哈斯图的本体偏序关系消冗方法研究[J]. 情报学报, 2015, 34(3): 279–285. doi: 10.3772/j.issn.1000-0135.2015.003.006

    YU Juan, XIONG Zhenhui, and OU Zhonghui. Eliminating redundant ontology relations based on Hasse Diagram[J]. Journal of the China Society for Scientific and Technical Information, 2015, 34(3): 279–285. doi: 10.3772/j.issn.1000-0135.2015.003.006
    OCHS C, PERL Y, GELLER J, et al. An empirical analysis of ontology reuse in BioPortal[J]. Journal of Biomedical Informatics, 2017, 71: 165–177. doi: 10.1016/j.jbi.2017.05.021
    SHARP M E. Toward a comprehensive drug ontology: Extraction of drug-indication relations from diverse information sources[J]. Journal of Biomedical Semantics, 2017, 8: 2–12. doi: 10.1186/s13326-016-0110-0
    CHATTERJEE N, KAUSHIK N, GUPTA D, et al. Ontology merging: A practical perspective[J]. Information and Communication Technology for Intelligent Systems, 2018: 136–145. doi: 10.1007/978-3-319-63645-0_15
    JHA M, VELTRI P, GUZZI P H, et al. Network based algorithms for module extraction from RNASeq data: A quantitative assessment[C]. Proceedings of 2017 IEEE International Conference on Bioinformatics and Biomedicine, Kansas City, USA, 2017: 1312–1315.
    DORAN P, TAMMA V, and IANNONE L. Ontology module extraction for ontology reuse: An ontology engineering perspective[C]. Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management, Lisbon, Portugal, 2007: 61–70.
    ABEYSINGHE R, HINDERER E W, MOSELEY H N B, et al. Auditing subtype inconsistencies among gene ontology concepts[C]. Proceedings of 2017 IEEE International Conference on Bioinformatics and Biomedicine, Kansas City, USA, 2017: 1242–1245.
    DIETZE F, VALDEZ A C, KAROFF J, et al. That’s so meta! Usability of a hypergraph-based discussion model[C]. Proceedings of the 8th International Conference on Digital Human Modeling. Applications in Health, Safety, Ergonomics, and Risk Management: Health and Safety, Vancouver, Canada, 2017: 248–258.
    WARSHALL S. A theorem on boolean matrices[J]. Journal of the ACM (JACM) , 1962, 9(1): 11–12. doi: 10.1145/321105.321107
    刘树新, 季新生, 刘彩霞, 等. 一种信息传播促进网络增长的网络演化模型[J]. 物理学报, 2014, 63(15): 158902. doi: 10.7498/aps.63.158902

    LIU Shuxin, JI Xinsheng, LIU Caixia, et al. A complex network evolution model for network growth promoted by information transmission[J]. Acta Physica Sinica, 2014, 63(15): 158902. doi: 10.7498/aps.63.158902
    徐雷. 本体网络结构及其演化研究[D]. [博士论文], 武汉大学, 2014.

    XU Lei. A research on the structure of ontology networks and its evolution[D]. [Ph.D. dissertation], Wuhan University, 2014.
    RASKIN R G and PAN M J. Knowledge representation in the semantic web for Earth and environmental terminology (SWEET)[J]. Computers & Geosciences, 2005, 31(9): 1119–1125. doi: 10.1016/j.cageo.2004.12.004
    SAVIĆ M, IVANOVIĆ M, and JAIN L C. Complex Networks in Software, Knowledge, and Social Systems[M]. Cham: Springer, 2019: 143–175.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (2066) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return