Citation: | Xiaoheng ZHANG, Yongming LI, Pin WANG, Xiaoping ZENG, Fang YAN, Yanling ZHANG, Oumei CHENG. Classification Algorithm of Parkinson’s Disease Based on Convolutional Sparse Transfer Learning and Sample/Feature Parallel Selection[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1641-1649. doi: 10.11999/JEIT180792 |
BENGE J F, ROBERTS R L, KEKECS Z, et al. Brief report: knowledge of, interest in, and willingness to try behavioral interventions in individuals with Parkinson's disease[J]. Advances in Mind-Body Medicine, 2018, 32(1): 8–12.
|
PLOUVIER A O A, OLDE HARTMAN T C, VAN LITSENBURG A, et al. Being in control of Parkinson's disease: a qualitative study of community-dwelling patients' coping with changes in care[J]. European Journal of General Practice, 2018, 24(1): 138–145. doi: 10.1080/13814788.2018.1447561
|
CHIU Y F and FORREST K. The impact of lexical characteristics and noise on intelligibility of Parkinsonian speech[J]. Journal of Speech, Language, and Hearing Research, 2018, 61(4): 837–846. doi: 10.1044/2017_JSLHR-S-17-0205
|
LITTLE M A, MCSHARRY P E, HUNTER E J, et al. Suitability of dysphonia measurements for telemonitoring of Parkinson's disease[J]. IEEE Transactions on Biomedical Engineering, 2009, 56(4): 1015–1022. doi: 10.1109/TBME.2008.2005954
|
TSANAS A, LITTLE M A, MCSHARRY P E, et al. Novel speech signal processing algorithms for high-accuracy classification of Parkinson's disease[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(5): 1264–1271. doi: 10.1109/TBME.2012.2183367
|
SAKAR B E, ISENKUL M E, SAKAR C O, et al. Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings[J]. IEEE Journal of Biomedical and Health Informatics, 2013, 17(4): 828–834. doi: 10.1109/JBHI.2013.2245674
|
GODINO-LLORENTE J I, SHATTUCK-HUFNAGEL S, CHOI J Y, et al. Towards the identification of idiopathic Parkinson's disease from the speech. New articulatory kinetic biomarkers[J]. PLOS One, 2017, 12(12): e0189583. doi: 10.1371/journal.pone.0189583
|
KAYA M and BILGE H Ş. Classification of Parkinson speech data by metric learning[C]. Proceedings of the 2017 International Artificial Intelligence and Data Processing Symposium, Malatya, Turkey, 2017: 1–5.
|
JI Wei and LI Yun. Stable dysphonia measures selection for Parkinson speech rehabilitation via diversity regularized ensemble[C]. International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 2264–2268. doi: 10.1109/ICASSP.2016.7472080.
|
KIM J, NASIR M, GUPTA R, et al. Automatic estimation of Parkinson's disease severity from diverse speech tasks[C]. Proceedings of the 16th Annual Conference of the International Speech Communication Association, Dresden, Germany, 2015: 914–918.
|
SHAHBAKHTI M, TAHERIFAR D, and SOROURI A. Linear and non-linear speech features for detection of Parkinson's disease[C]. Proceedings of the 6th 2013 Biomedical Engineering International Conference, Amphur Muang, Thailand, 2013: 1–3. doi: 10.1109/BMEiCon.2013.6687667.
|
DUBEY H, GOLDBERG J C, ABTAHI M, et al. EchoWear: Smartwatch technology for voice and speech treatments of patients with Parkinson's disease[C]. Proceedings of the Conference on Wireless Health, Bethesda, USA, 2015: Article No.15. doi: 10.1145/2811780.2811957.
|
ARIAS-VERGARA T, VASQUEZ-CORREA J C, OROZCO-ARROYAVE J R, et al. Parkinson's disease progression assessment from speech using GMM-UBM[C]. Conference of the International Speech Communication Association, San Francisco, USA, 2016: 1933–1937. doi: 10.21437/Interspeech.2016-1122.
|
GEMAN O. Data processing for Parkinson's disease: Tremor, speech and gait signal analysis[C]. Proceedings of the 2011 E-Health and Bioengineering Conference, Iasi, Romania, 2011: 1–4.
|
李勇明, 杨刘洋, 刘玉川, 等. 基于语音样本重复剪辑和随机森林的帕金森病诊断算法研究[J]. 生物医学工程学杂志, 2016, 33(6): 1053–1059.
LI Yongming, YANG Liuyang, LIU Yuchuan, et al. Research on diagnosis algorithm of Parkinson's disease based on speech sample multi-edit and random forest[J]. Journal of Biomedical Engineering, 2016, 33(6): 1053–1059.
|
张小恒, 王力锐, 曹垚, 等. 混合语音段特征双边式优选算法用于帕金森病分类研究[J]. 生物医学工程学杂志, 2017, 34(6): 942–948. doi: 10.7507/1001-5515.201704061
ZHANG Xiaoheng, WANG Lirui, CAO Yao, et al. Combining speech sample and feature bilateral selection algorithm for classification of Parkinson's disease[J]. Journal of Biomedical Engineering, 2017, 34(6): 942–948. doi: 10.7507/1001-5515.201704061
|
SHARMA P, ABROL V, DILEEP A D, et al. Sparse coding based features for speech units classification[J]. Computer Speech & Language, 2018, 47: 333–350. doi: 10.1016/j.csl.2017.08.004
|
ZHOU Haotian, ZHUANG Yin, CHEN Liang, et al. Ship Detection in Optical Satellite Images Based on Sparse Representation[M]. Singapore: Springer, 2018: 164–171. doi: 10.1007/978-981-10-7521-6_20.
|
LI Jinming. Sparse representation based single image super-resolution with low-rank constraint and nonlocal self-similarity[J]. Multimedia Tools and Applications, 2018, 77(2): 1693–1714. doi: 10.1007/s11042-017-4399-1
|
LEE H, BATTLE A, RAINA R, et al. Efficient sparse coding algorithms[C]. Proceedings of the 19th International Conference on Neural Information Processing Systems, Canada, 2006: 801–808.
|
CHANG Hang, HAN Ju, ZHONG Cheng, et al. Unsupervised transfer learning via multi-scale convolutional sparse coding for biomedical applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(5): 1182–1194. doi: 10.1109/TPAMI.2017.2656884
|
ZHANG He and PATEL V M. Convolutional sparse and low-rank coding-based image decomposition[J]. IEEE Transactions on Image Processing, 2018, 27(5): 2121–2133. doi: 10.1109/TIP.2017.2786469
|
HU Xuemei, HEIDE F, DAI Qionghai, et al. Convolutional sparse coding for RGB+NIR imaging[J]. IEEE Transactions on Image Processing, 2018, 27(4): 1611–1625. doi: 10.1109/TIP.2017.2781303
|
WOHLBERG B. Efficient algorithms for convolutional sparse representations[J]. IEEE Transactions on Image Processing, 2016, 25(1): 301–315. doi: 10.1109/TIP.2015.2495260
|
PERKINS S and THEILER J. Online feature selection using grafting[C]. Proceedings of the Twentieth International Conference on Machine Learning, Washington DC, USA, 2003: 592–599.
|
BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends ® in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016
|
EMADI M, MIANDJI E, and UNGER J. OMP-based DOA estimation performance analysis[J]. Digital Signal Processing, 2018, 79: 57–65. doi: 10.1016/j.dsp.2018.04.006
|
ŠOREL M and ŠROUBEK F. Fast convolutional sparse coding using matrix inversion lemma[J]. Digital Signal Processing, 2016, 55: 44–51. doi: 10.1016/j.dsp.2016.04.012
|