Advanced Search
Volume 41 Issue 7
Jul.  2019
Turn off MathJax
Article Contents
Lei PU, Xinxi FENG, Zhiqiang HOU, Wangsheng YU. Robust Visual Tracking Based on Spatial Reliability Constraint[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1650-1657. doi: 10.11999/JEIT180780
Citation: Lei PU, Xinxi FENG, Zhiqiang HOU, Wangsheng YU. Robust Visual Tracking Based on Spatial Reliability Constraint[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1650-1657. doi: 10.11999/JEIT180780

Robust Visual Tracking Based on Spatial Reliability Constraint

doi: 10.11999/JEIT180780
Funds:  The National Natural Science Foundation of China (61571458, 61473309, 41601436)
  • Received Date: 2018-08-07
  • Rev Recd Date: 2019-01-21
  • Available Online: 2019-02-15
  • Publish Date: 2019-07-01
  • Because of the problem that the target is prone to drift in complex background, a robust tracking algorithm based on spatial reliability constraint is proposed. Firstly, the pre-trained Convolutional Neural Network (CNN) model is used to extract the multi-layer deep features of the target, and the correlation filters are respectively trained on each layer to perform weighted fusion of the obtained response maps. Then, the reliability region information of the target is extracted through the high-level feature map, a binary matrix is obtained. Finally, the obtained binary matrix is used to constrain the search area of the response map, and the maximum response value in the area is the target position. In addition, in order to deal with the long-term occlusion problem, a random selection model update strategy with the first frame template information is proposed. The experimental results show that the proposed algorithm has good performance in dealing with similar background interference, occlusion, and other scenes.
  • loading
  • SMEULDERS A W M, CHU D M, CUCCHIARA R, et al. Visual tracking: An experimental survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1442–1468. doi: 10.1109/TPAMI.2013.230
    WANG Naiyan, SHI Jianping, YEUNG D Y, et al. Understanding and diagnosing visual tracking systems[C]. Proceedings of 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 3101–3109. doi: 1109/ICCV.2015.355.
    RAWAT W and WANG Zenghui. Deep convolutional neural networks for image classification: A comprehensive review[J]. Neural Computation, 2017, 29(9): 2352–2449. doi: 10.1162/neco_a_00990
    GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587.
    SHELHAMER E, LONG J, and DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640–651. doi: 10.1109/TPAMI.2016.2572683
    WANG Naiyan and YEUNG D Y. Learning a deep compact image representation for visual tracking[C]. Proceedings of the 26th International Conference on Neural Information Processing Systems, South Lake Tahoe, Nevada, USA, 2013: 809–817.
    HONG S, YOU T, KWAK S, et al. Online tracking by learning discriminative saliency map with convolutional neural network[C]. Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 2015: 597–606.
    NAM H and HAN B. Learning multi-domain convolutional neural networks for visual tracking[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 4293–4302.
    李寰宇, 毕笃彦, 杨源, 等. 基于深度特征表达与学习的视觉跟踪算法研究[J]. 电子与信息学报, 2015, 37(9): 2033–2039. doi: 10.11999/JEIT150031

    LI Huanyu, BI Duyan, YANG Yuan, et al. Research on visual tracking algorithm based on deep feature expression and learning[J]. Journal of Electronics &Information Technology, 2015, 37(9): 2033–2039. doi: 10.11999/JEIT150031
    侯志强, 戴铂, 胡丹, 等. 基于感知深度神经网络的视觉跟踪[J]. 电子与信息学报, 2016, 38(7): 1616–1623. doi: 10.11999/JEIT151449

    HOU Zhiqiang, DAI Bo, HU Dan, et al. Robust visual tracking via perceptive deep neural network[J]. Journal of Electronics &Information Technology, 2016, 38(7): 1616–1623. doi: 10.11999/JEIT151449
    HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]. Proceedings of the 12th European Conference on Computer Vision, Florence, Italy, 2012: 702–715. doi: 10.1007/978-3-642-33765-9_50.
    DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C]. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1090–1097. doi: 10.1109/CVPR.2014.143.
    HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583–596. doi: 10.1109/tpami.2014.2345390
    DANELLJAN M, HÄGER G, KHAN F S, et al. Accurate scale estimation for robust visual tracking[C]. Proceedings of British Machine Vision Conference, Nottingham, UK, 2014: 65.1–65.11. doi: 10.5244/C.28.65.
    DANELLJAN M, HÄGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking[C]. Proceedings of 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 4310–4318. doi: 10.1109/ICCV.2015.490.
    DANELLJAN M, ROBINSON A, KHAN F S, et al. Beyond correlation filters: Learning continuous convolution operators for visual tracking[C]. Proceedings of the 14th European Conference, Amsterdam, the Netherlands, 2016: 472–488. doi: 10.1007/978-3-319-46454-1_29.
    RUSSAKOVSKY O, DENG Jia, SU Hao, et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211–252. doi: 10.1007/s11263-015-0816-y
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105. doi: 10.1145/3065386.
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. International Conference on Learning Representations, San Diego,USA,2015.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    VEDALDI A and LENC K. Matconvnet: Convolutional neural networks for matlab[C]. Proceedings of the 23rd ACM International Conference on Multimedia, Brisbane, Australia, 2015: 689–692. doi: 10.1145/2733373.2807412.
    WU Yi, LIM J, and YANG M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834–1848. doi: 10.1109/TPAMI.2014.2388226
    DANELLJAN M, HÄGER G, KHAN F S, et al. Convolutional features for correlation filter based visual tracking[C]. Proceedings of 2015 IEEE International Conference on Computer Vision Workshop, Santiago, Chile, 2015: 58–66. doi: 10.1109/ICCVW.2015.84.
    QI Yuankai, ZHANG Shengping, QIN Lei, et al. Hedged deep tracking[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 4303–4311. doi: 10.1109/CVPR.2016.466.
    MA Chao, HUANG Jiabin, YANG Xiaokang, et al. Hierarchical convolutional features for visual tracking[C]. Proceedings of 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 3074–3082. doi: 10.1109/ICCV.2015.352.
    ZHANG Jianming, MA Shugao, and SCLAROFF S. MEEM: Robust tracking via multiple experts using entropy minimization[C]. Proceedings of the 13th European Conference, Zurich, Switzerland, 2014: 188–203.
    LIANG Pengpeng, BLASCH E, and LING Haibin. Encoding color information for visual tracking: Algorithms and benchmark[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5630–5644. doi: 10.1109/TIP.2015.2482905
    TAO Ran, GAVVES E, and SMEULDERS A W M. Siamese instance search for tracking[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1420–1429. doi: 10.1109/CVPR.2016.158.
    BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional siamese networks for object tracking[C]. European Conference on Computer Vision, Amsterdam, the Netherlands, 2016: 850–865.
    侯志强, 张浪, 余旺盛, 等. 基于快速傅里叶变换的局部分块视觉跟踪算法[J]. 电子与信息学报, 2015, 37(10): 2397–2404. doi: 10.11999/JEIT150183

    HOU Zhiqiang, ZHANG Lang, YU Wangsheng, et al. Local patch tracking algorithm based on fast fourier transform[J]. Journal of Electronics &Information Technology, 2015, 37(10): 2397–2404. doi: 10.11999/JEIT150183
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views (2333) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return