Citation: | Yaguan QIAN, Hongbo LU, Shouling JI, Wujie ZHOU, Shuhui WU, Bensheng YUN, Xiangxing TAO, Jingsheng LEI. Adversarial Example Generation Based on Particle Swarm Optimization[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1658-1665. doi: 10.11999/JEIT180777 |
BARRENO M, NELSON B, SEARS R, et al. Can machine learning be secure?[C]. Proceedings of 2006 ACM Symposium on Information, Computer and Communications Security, Taipei, China, 2006: 16–25. doi: 10.1145/1128817.1128824.
|
LI Pan, ZHAO Wentao, LIU Qiang, et al. Security issues and their countermeasuring techniques of machine learning: A survey[J]. Journal of Frontiers of Computer Science & Technology, 2018, 12(2): 171–184.
|
SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[EB/OL]. http://arxiv.org/abs/1312.6199v4, 2014.
|
PAPERNOT N, MCDANIEL P, JHA S, et al. The limitations of deep learning in adversarial settings[C]. Proceedings of 2016 IEEE European Symposium on Security and Privacy, Saarbrucken, Germany, 2016: 372–387. doi: 10.1109/EuroSP.2016.36.
|
PAPERNOT N, MCDANIEL P, GOODFELLOW I, et al. Practical black-box attacks against machine learning[EB/OL]. http://arxiv.org/abs/1602.02697v4, 2017.
|
AKHTAR N and MIAN A. Threat of adversarial attacks on deep learning in computer vision: A survey[J]. IEEE Access, 2018, 6: 14410–14430. doi: 10.1109/ACCESS.2018.2807385
|
CORTES C and VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273–297. doi: 10.1007/BF00994018
|
BIGGIO B, NELSON B, and LASKOV P. Support vector machines under adversarial label noise[C]. Proceedings of the 3rd Asian Conference on Machine Learning, Taoyuan, China, 2011, 20: 97–112.
|
BIGGIO B, NELSON B, and LASKOV P. Poisoning attacks against support vector machines[EB/OL]. http://arxiv.org/abs/1206.6389v3, 2013.
|
MEI Shike and ZHU Xiaojin. Using machine teaching to identify optimal training-set attacks on machine learners[C]. Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, USA, 2015: 2871–2877.
|
CHEN Zhipeng, TONDI B, LI Xiaolong, et al. A gradient-based pixel-domain attack against SVM detection of global image manipulations[C]. Proceedings of 2017 IEEE Workshop on Information Forensics and Security, Rennes, France, 2017: 1–6. doi: 10.1109/WIFS.2017.8267668.
|
BIGGIO B, CORONA I, MAIORCA D, et al. Evasion attacks against machine learning at test time[EB/OL]. http://arxiv.org/abs/1708.06131, 2013.
|
GOLLAND P. Discriminative direction for kernel classifiers[C]. Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic, Vancouver, British Columbia, Canada, 2001: 745–752.
|
AMRAEE S, VAFAEI A, JAMSHIDI K, et al. Abnormal event detection in crowded scenes using one-class SVM[J]. Signal, Image and Video Processing, 2018, 12(6): 1115–1123. doi: 10.1007/s11760-018-1267-z
|
BENMAHAMED Y, TEGUAR M, and BOUBAKEUR A. Application of SVM and KNN to Duval pentagon 1 for transformer oil diagnosis[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(6): 3443–3451. doi: 10.1109/TDEI.2017.006841
|
SCHNALL A and HECKMANN M. Feature-space SVM adaptation for speaker adapted word prominence detection[J]. Computer Speech & Language, 2019, 53: 198–216. doi: 10.1016/j.csl.2018.06.001
|
ZHAO Rui and MAO Kezhi. Semi-random projection for dimensionality reduction and extreme learning machine in high-dimensional space[J]. IEEE Computational Intelligence Magazine, 2015, 10(3): 30–41. doi: 10.1109/MCI.2015.2437316
|
EBERHART R and KENNEDY J. A new optimizer using particle swarm theory[C]. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 2002: 39–43. doi: 10.1109/MHS.1995.494215.
|
SHI Y and EBERHART R. A modified particle swarm optimizer[C]. Proceeding of 1998 IEEE International Conference on Evolutionary Computation, World Congress on Computational Intelligence, Anchorage, USA, 1998: 69–73. doi: 10.1109/ICEC.1998.699146.
|
LIN S W, YING K C, CHEN S C, et al. Particle swarm optimization for parameter determination and feature selection of support vector machines[J]. Expert Systems with Applications, 2008, 35(4): 1817–1824. doi: 10.1016/j.eswa.2007.08.088
|
LECUN Y, CORTES C, and BURGES C J C. The MNIST database of handwritten digits[EB/OL]. http://yann.lecun.com/exdb/mnist/, 2010.
|
YALE. The Yale face database[OL]. http://cvc.cs.yale.edu/cvc/projects/yalefaces/yalefaces.html, 1997.
|
何光辉, 唐远炎, 房斌, 等. 图像分割方法在人脸识别中的应用[J]. 计算机工程与应用, 2010, 46(28): 196–198. doi: 10.3778/j.issn.1002-8331.2010.28.055
HE Guanghui, TANG Yuanyan, FANG Bin, et al. Image partition method in face recognition[J]. Computer Engineering and Applications, 2010, 46(28): 196–198. doi: 10.3778/j.issn.1002-8331.2010.28.055
|