Zhuoran ZHANG, Huang ZHANG, Fangguo ZHANG. Survey on Applications of List Decoding to Cryptography[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1049-1060. doi: 10.11999/JEIT190851
Citation:
Jinfu XU, Jin WU, Junwei LI, Tongzhou QU, Yongxing DONG. Controlled Physical Unclonable Function Research Based on Sensitivity Confusion Mechanism[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1601-1609. doi: 10.11999/JEIT180775
Zhuoran ZHANG, Huang ZHANG, Fangguo ZHANG. Survey on Applications of List Decoding to Cryptography[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1049-1060. doi: 10.11999/JEIT190851
Citation:
Jinfu XU, Jin WU, Junwei LI, Tongzhou QU, Yongxing DONG. Controlled Physical Unclonable Function Research Based on Sensitivity Confusion Mechanism[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1601-1609. doi: 10.11999/JEIT180775
In order to overcome the vulnerability of Physical Unclonable Function (PUF) to modeling attacks, a controlled PUF architecture based on sensitivity confusion mechanism is proposed. According to the Boolean function definition of PUF and Walsh spectrum theory, it is derived that each excitation bit has different sensitivity, and the position selection rules related to the parity of the confound value bit width are analyzed and summarized. This rule guides the design of the Multi-bit Wide Confusion Algorithm (MWCA) and constructs a controlled PUF architecture with high security. The basic PUF structure is evaluated as a protective object of the controlled PUF. It is found that the response generated by the controlled PUF based on the sensitivity confusion mechanism has better randomness. Logistic regression algorithm is used to model different PUF attack. The experimental results show that compared with the basic ROPUF, the arbiter PUF and the OB-PUF based on the random confusion mechanism, the controlled PUF based on the sensitivity confusion mechanism can significantly improve the PUF resistance capabilities for modeling attack.
RÜHRMAIR U, SÖLTER J, SEHNKE F, et al. PUF modeling attacks on simulated and silicon data[J]. IEEE Transactions on Information Forensics and Security, 2013, 8(11): 1876–1891. doi: 10.1109/TIFS.2013.2279798
GASSEND B, VAN DIJK M, CLARKE D, et al. Controlled physical random functions[J]. ACM Transactions on Information and System Security, 2008, 10(4): 23–25.
KATZENBEISSER S, KOÇABAS Ü, VAN DER LEEST V, et al. Recyclable PUFs: Logically Reconfigurable PUFs[M]. Berlin, Germamy: Springer, 2011: 374–389.
LAO Yingjie and PARHI K K. Reconfigurable architectures for silicon physical unclonable functions[C]. Proceedings of 2011 IEEE International Conference on Electro/Information Technology, Mankato, USA, 2011: 1–7.
MAJZOOBI M, KOUSHANFAR F, and POTKONJAK M. Techniques for design and implementation of secure reconfigurable PUFs[J]. ACM Transactions on Reconfigurable Technology and Systems, 2009, 2(1): 5.
GAO Yansong, AL-SARAWI S F, ABBOTT D, et al. Modeling attack resilient reconfigurable latent obfuscation technique for PUF based lightweight authentication[J]. arXiv:1706.06232, 2017.
XU Daoyun, WEI Li, and WANG Xiaofeng. Learning and testing of properties for Boolean functions[J]. Journal of Wuhan University:Natural Science Edition, 2012, 58(2): 125–134.
GANJI F, TAJIK S, FÄßLER F, et al. Strong machine learning attack against PUFs with no mathematical model[C]. Proceedings of the 18th International Conference on Cryptographic Hardware and Embedded Systems, Santa, USA, 2016: 391–411.
ZALIVAKA S S, PUCHKOV A V, KLYBIK V P, et al. Multi-valued arbiters for quality enhancement of PUF responses on FPGA implementation[C]. Proceedings of 201621st Asia and South Pacific Design Automation Conference, Macau, China, 2016: 533–538.
GASSEND B, CLARKE D, VAN DIJK M, et al. Silicon physical random functions[C]. Proceedings of the 9th ACM Conference on Computer and Communications Security, USA, 2002: 148–160.
LAO Yingjie and PARHI K K. Statistical analysis of MUX-based physical unclonable functions[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2014, 33(5): 649–662. doi: 10.1109/TCAD.2013.2296525
PANG Zihan, ZHOU Qiang, GAO Wenchao, et al. Hardware implementation of physical unclonable function on FPGAs[J]. Journal of Computer-Aided Design &Computer Graphics, 2017, 29(9): 1590–1603. doi: 10.3969/j.issn.1003-9775.2017.09.002
DENG R, WENG Jian, REN Kui, et al. Security and Privacy in Communication Networks[M]. Cham: Springer, 2016: 675–693.
KODÝTEK F and LÓRENCZ R. Proposal and properties of ring oscillator-based PUF on FPGA[J]. Journal of Circuits, Systems and Computers, 2016, 25(3): 1640016. doi: 10.1142/S0218126616400168
KODÝTEK F, LÓRENCZ R, and BUČEK J. Improved ring oscillator PUF on FPGA and its properties[J]. Microprocessors and Microsystems, 2016, 47: 55–63. doi: 10.1016/j.micpro.2016.02.005
Zhuoran ZHANG, Huang ZHANG, Fangguo ZHANG. Survey on Applications of List Decoding to Cryptography[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1049-1060. doi: 10.11999/JEIT190851
Zhuoran ZHANG, Huang ZHANG, Fangguo ZHANG. Survey on Applications of List Decoding to Cryptography[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1049-1060. doi: 10.11999/JEIT190851