Advanced Search
Volume 41 Issue 7
Jul.  2019
Turn off MathJax
Article Contents
Chunyan LIANG, Wenhao YUAN, Yanling LI, Bin XIA, Wenzhu SUN. Speaker Recognition Using Discriminant Neighborhood Embedding[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1774-1778. doi: 10.11999/JEIT180761
Citation: Chunyan LIANG, Wenhao YUAN, Yanling LI, Bin XIA, Wenzhu SUN. Speaker Recognition Using Discriminant Neighborhood Embedding[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1774-1778. doi: 10.11999/JEIT180761

Speaker Recognition Using Discriminant Neighborhood Embedding

doi: 10.11999/JEIT180761
Funds:  The National Natural Science Foundation of China (11704229, 61701286, 61562068), The Shandong Provincial Natural Science Foundation (ZR2017LA011, ZR2015FL003, ZR2017MF047), The Project of Shandong Province Higher Educational Science and Technology Program (J17KA078), The Natural Science Foundation of Inner Mongolia Autonomous Region of China (2015MS0629)
  • Received Date: 2018-08-03
  • Rev Recd Date: 2019-01-21
  • Available Online: 2019-02-24
  • Publish Date: 2019-07-01
  • Discriminant Neighborhood Embedding (DNE) algorithm is introduced into the speaker recognition system. DNE is a manifold learning approach and aims at preserving the local neighborhood structure on the data manifold. As well, DNE has much more power in discrimination by sufficiently using the between-class discriminant information. The experimental results on the telephone-telephone core condition of the NIST 2010 Speaker Recognition Evaluation (SRE) dataset indicate the effectiveness of DNE algorithm.
  • loading
  • REYNOLDS D A and ROSE R C. Robust text-independent speaker identification using Gaussian mixture speaker models[J]. IEEE Transactions on Speech and Audio Processing, 1995, 3(1): 72–83. doi: 10.1109/89.365379
    KINNUNEN T and LI Haizhou. An overview of text-independent speaker recognition: From features to supervectors[J]. Speech Communication, 2010, 52(1): 12–40. doi: 10.1016/j.specom.2009.08.009
    王伟, 韩纪庆, 郑铁然, 等. 基于Fisher判别字典学习的说话人识别[J]. 电子与信息学报, 2016, 38(2): 367–372. doi: 10.11999/JEIT150566

    WANG Wei, HAN Jiqing, ZHENG Tieran, et al. Speaker recognition based on fisher discrimination dictionary Learning[J]. Journal of Electronics &Information Technology, 2016, 38(2): 367–372. doi: 10.11999/JEIT150566
    KENNY P, BOULIANNE G, OUELLET P, et al. Speaker and session variability in GMM-based speaker verification[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(4): 1448–1460. doi: 10.1109/tasl.2007.894527
    郭武, 戴礼荣, 王仁华. 采用因子分析和支持向量机的说话人确认系统[J]. 电子与信息学报, 2009, 31(2): 302–305. doi: 10.3724/SP.J.1146.2007.01289

    GUO Wu, DAI Lirong, and WANG Renhua. Speaker verification based on factor analysis and SVM[J]. Journal of Electronics &Information Technology, 2009, 31(2): 302–305. doi: 10.3724/SP.J.1146.2007.01289
    DEHAK N, KENNY P J, DEHAK R, et al. Front-end factor analysis for speaker verification[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19(4): 788–798. doi: 10.1109/tasl.2010.2064307
    DHANUSH B K, SUPARNA S, AARTHY R, et al. Factor analysis methods for joint speaker verification and spoof detection[C]. Proceedings of 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, USA, 2017: 5385–5389.
    SU Hang and WEGMANN S. Factor analysis based speaker verification using ASR[C]. Proceedings of the Interspeech 2016, San Francisco, USA, 2016: 2223–2227.
    MAK M W, PANG Xiaomin, and CHIEN J T. Mixture of PLDA for noise robust i-vector speaker verification[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2016, 24(1): 130–142. doi: 10.1109/TASLP.2015.2499038
    LEI Yun and HANSEN J H L. Speaker recognition using supervised probabilistic principal component analysis[C]. Proceedings of the Interspeech 2010, Makuhari, Japan, 2010: 382–385.
    LIANG Chunyan, YANG Lin, ZHAO Qingwei, et al. Factor Analysis of neighborhood-preserving embedding for speaker verification[J]. IEICE Transactions on Information and Systems, 2012, 95(10): 2572–2576. doi: 10.1587/transinf.e95.d.2572
    YANG Jinchao, LIANG Chunyan, YANG Lin, et al. Factor analysis of Laplacian approach for speaker recognition[C]. Proceedings of 2012 IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, 2012: 4221–4224.
    CHIEN J T and HSU C W. Variational manifold learning for speaker recognition[C]. Proceedings of 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, USA, 2017: 4935–4939.
    WU Di. Speaker recognition based on i-vector and improved local preserving projection[C]. Proceedings of the 2015 Chinese Intelligent Automation Conference, Fuzhou, China, 2015: 115–121.
    HE Xiaofei, CAI Deng, YAN Shuicheng, et al. Neighborhood preserving embedding[C]. Proceedings of the Tenth IEEE International Conference on Computer Vision, Beijing, China, 2005: 1208–1213.
    KAJAREKAR S S and STOLCKE A. NAP and WCCN: Comparison of approaches using MLLR-SVM speaker verification system[C]. Proceedings of 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, Honolulu, USA, 2007: IV-249–IV-252.
    HAEB-UMBACH R and NEY H. Linear discriminant analysis for improved large vocabulary continuous speech recognition[C]. Proceedings of 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing, San Francisco, USA, 1992: 13–16.
    DING Chuntao and ZHANG Li. Double adjacency graphs-based discriminant neighborhood embedding[J]. Pattern Recognition, 2015, 48(5): 1734–1742. doi: 10.1016/j.patcog.2014.08.025
    WANG Jing, CHEN Fang, and GAO Quanxue. Discriminant neighborhood structure embedding using trace ratio criterion for image recognition[J]. Journal of Computer and Communications, 2015, 3(11): 61282. doi: 10.4236/jcc.2015.311011
    魏权龄, 王日爽, 徐冰, 等. 数学规划与优化设计[M]. 北京: 国防工业出版社, 1984: 358–470.

    WEI Quanling, WANG Rishuang, XU Bing, et al. Mathematical Programming and Optimization Design[M]. Beijing: National Defense Industry Press, 1984: 358–470.
    NIST. The NIST year 2010 speaker recognition evaluation plan[EB/OL]. http://www.oalib.com/references/16891962, 2012.
    SCHEFFER N, FERRER L, GRACIARENA M, et al. The SRI NIST 2010 speaker recognition evaluation system[C]. Proceedings of 2011 IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, Czech Republic, 2011: 5292–5295.
    JOACHIMS T. SVM-light support vector machine[EB/OL]. http://svmlight.joachims.org/, 2008.
    KINNUNEN T, JUVELA L, ALKU P, et al. Non-parallel voice conversion using i-vector PLDA: towards unifying speaker verification and transformation[C]. Proceedings of 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, USA, 2017: 5535–5539.
    BAHMANINEZHAD F and HANSEN J H L. i-Vector/PLDA speaker recognition using support vectors with discriminant analysis[C]. Proceedings of 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, USA, 2017: 5410–5414.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(5)

    Article Metrics

    Article views (2183) PDF downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return