Citation: | Xiaolong LIU. Application of Improved Multiverse Algorithm to Large Scale Optimization Problems[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1666-1673. doi: 10.11999/JEIT180751 |
MAHDAVI S, RAHNAMAYAN S, and SHIRI M E. Multilevel framework for large-scale global optimization[J]. Soft Computing, 2017, 21(14): 4111–4140. doi: 10.1007/s00500-016-2060-y
|
BOLUFÉ-RÖHLER A, FIOL-GONZÁLEZ S, and CHEN S. A minimum population search hybrid for large scale global optimization[C]. Proceedings of 2015 IEEE Congress on Evolutionary Computation, Sendai, Japan, 2015: 1958–1965. doi: 10.1109/CEC.2015.7257125.
|
梁静, 刘睿, 于坤杰, 等. 求解大规模问题协同进化动态粒子群优化算法[J]. 软件学报, 2018, 29(9): 2595–2605. doi: 10.13328/j.cnki.jos.005398
LIANG Jing, LIU Rui, YU Kunjie, et al. Dynamic multi-swarm particle swarm optimization with cooperative coevolution for large scale global optimization[J]. Journal of Software, 2018, 29(9): 2595–2605. doi: 10.13328/j.cnki.jos.005398
|
罗家祥, 倪晓晔, 胡跃明. 融合多种搜索策略的差分进化大规模优化算法[J]. 华南理工大学学报: 自然科学版, 2017, 45(3): 97–103. doi: 10.3969/j.issn.1000-565X.2017.03.014
LUO Jiaxiang, NI Xiaoye, and HU Yueming. A hybrid differential evolution algorithm with multiple search strategies for large-scale optimization[J]. Journal of South China University of Technology:Natural Science Edition, 2017, 45(3): 97–103. doi: 10.3969/j.issn.1000-565X.2017.03.014
|
MIRJALILI S and LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51–67. doi: 10.1016/j.advengsoft.2016.01.008
|
龙文, 蔡绍洪, 焦建军, 等. 求解大规模优化问题的改进鲸鱼优化算法[J]. 系统工程理论与实践, 2017, 37(11): 2983–2994. doi: 10.12011/1000-6788(2017)11-2983-12
LONG Wen, CAI Shaohong, JIAO Jianjun, et al. Improved whale optimization algorithm for large scale optimization problems[J]. Systems Engineering-Theory &Practice, 2017, 37(11): 2983–2994. doi: 10.12011/1000-6788(2017)11-2983-12
|
MIRJALILI S, MIRJALILI S M, and LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46–61. doi: 10.1016/j.advengsoft.2013.12.007
|
姜天华. 混合灰狼优化算法求解柔性作业车间调度问题[J]. 控制与决策, 2018, 33(3): 503–508. doi: 10.13195/j.kzyjc.2017.0124
JIANG Tianhua. Flexible job shop scheduling problem with hybrid grey wolf optimization algorithm[J]. Control and Decision, 2018, 33(3): 503–508. doi: 10.13195/j.kzyjc.2017.0124
|
梁静, 刘睿, 瞿博阳, 等. 进化算法在大规模优化问题中的应用综述[J]. 郑州大学学报: 工学版, 2018, 39(3): 15–21. doi: 10.13705/j.issn.1671-6833.2017.06.016
LIANG Jing, LIU Rui, QU Boyang, et al. A survey of evolutionary algorithms for large scale optimization problem[J]. Journal of Zhengzhou University:Engineering Science, 2018, 39(3): 15–21. doi: 10.13705/j.issn.1671-6833.2017.06.016
|
MIRJALILI S, MIRJALILI S M, and HATAMLOU A. Multi-verse optimizer: A nature-inspired algorithm for global optimization[J]. Neural Computing and Applications, 2016, 27(2): 495–513. doi: 10.1007/s00521-015-1870-7
|
赵世杰, 高雷阜, 徒君, 等. 耦合横纵向个体更新策略的改进MVO算法[J]. 控制与决策, 2018, 33(8): 1422–1428. doi: 10.13195/j.kzyjc.2017.0441
ZHAO Shijie, GAO Leifu, TU Jun, et al. Improved multi verse optimizer coupling horizontal-and-vertical individual updated strategies[J]. Control and Decision, 2018, 33(8): 1422–1428. doi: 10.13195/j.kzyjc.2017.0441
|
CHOPRA N and SHARMA J. Multi-objective optimum load dispatch using Multi-verse optimization[C]. Proceedings of the 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems, Delhi, India, 2016: 1–5.
|
HU Cong, LI Zhi, ZHOU Tian, et al. A multi-verse optimizer with levy flights for numerical optimization and its application in test scheduling for network-on-chip[J]. PLOS One, 2016, 11(12): e0167341. doi: 10.1371/journal.pone.0167341
|
FARIS H, ALJARAH I, and MIRJALILI S. Training feedforward neural networks using multi-verse optimizer for binary classification problems[J]. Applied Intelligence, 2016, 45(2): 322–332. doi: 10.1007/s10489-016-0767-1
|
JANGIR P, PARMAR S A, TRIVEDI I N, et al. A novel hybrid particle swarm optimizer with multi verse optimizer for global numerical optimization and optimal reactive power dispatch problem[J]. Engineering Science and Technology, An International Journal, 2017, 20(2): 570–586. doi: 10.1016/j.jestch.2016.10.007
|
ALI E E, EL-HAMEED M A, EL-FERGANY A A, et al. Parameter extraction of photovoltaic generating units using multi-verse optimizer[J]. Sustainable Energy Technologies and Assessments, 2016, 17: 68–76. doi: 10.1016/j.seta.2016.08.004
|
MIRJALILI S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems[J]. Neural Computing and Applications, 2016, 27(4): 1053–1073. doi: 10.1007/s00521-015-1920-1
|
ASKARZADEH A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm[J]. Computers & Structures, 2016, 169: 1–12. doi: 10.1016/j.compstruc.2016.03.001
|