Advanced Search
Volume 41 Issue 7
Jul.  2019
Turn off MathJax
Article Contents
Xiaolong LIU. Application of Improved Multiverse Algorithm to Large Scale Optimization Problems[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1666-1673. doi: 10.11999/JEIT180751
Citation: Xiaolong LIU. Application of Improved Multiverse Algorithm to Large Scale Optimization Problems[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1666-1673. doi: 10.11999/JEIT180751

Application of Improved Multiverse Algorithm to Large Scale Optimization Problems

doi: 10.11999/JEIT180751
Funds:  The National Natural Science Foundation of China (71471065, 71571072, 71771091), Guangzhou Social Science Federation Fund (2018GZGJ02)
  • Received Date: 2018-07-22
  • Rev Recd Date: 2019-01-17
  • Available Online: 2019-02-14
  • Publish Date: 2019-07-01
  • To overcome the mechanism shortcomings of wormhole and white hole selection in the Multi-Verse Optimizer (MVO), an Improved Multi-Universes Optimization (IMVO) algorithm is proposed. To speed up global exploration ability and quick iteration ability, this thesis designs the existence mechanism of wormhole with fixed probability and the Travel Distance Rate (TDR) that its convergence from early stage's smoothly to later stage's fast. The random white hole selection mechanism is proposed; Black holes can revolve around selected white hole stars and is modelled to solve the problem of information communication of the Inter-generational Universes. The performance of IMVO is verified by comparison experiments in low-middle dimensions. Three benchmarks test functions are selected for comparison in large scale which are difficult to be optimized, the experimental results show that IMVO has good applicability and robustness with higher solving accuracy and success rate in large scale optimization problem.
  • loading
  • MAHDAVI S, RAHNAMAYAN S, and SHIRI M E. Multilevel framework for large-scale global optimization[J]. Soft Computing, 2017, 21(14): 4111–4140. doi: 10.1007/s00500-016-2060-y
    BOLUFÉ-RÖHLER A, FIOL-GONZÁLEZ S, and CHEN S. A minimum population search hybrid for large scale global optimization[C]. Proceedings of 2015 IEEE Congress on Evolutionary Computation, Sendai, Japan, 2015: 1958–1965. doi: 10.1109/CEC.2015.7257125.
    梁静, 刘睿, 于坤杰, 等. 求解大规模问题协同进化动态粒子群优化算法[J]. 软件学报, 2018, 29(9): 2595–2605. doi: 10.13328/j.cnki.jos.005398

    LIANG Jing, LIU Rui, YU Kunjie, et al. Dynamic multi-swarm particle swarm optimization with cooperative coevolution for large scale global optimization[J]. Journal of Software, 2018, 29(9): 2595–2605. doi: 10.13328/j.cnki.jos.005398
    罗家祥, 倪晓晔, 胡跃明. 融合多种搜索策略的差分进化大规模优化算法[J]. 华南理工大学学报: 自然科学版, 2017, 45(3): 97–103. doi: 10.3969/j.issn.1000-565X.2017.03.014

    LUO Jiaxiang, NI Xiaoye, and HU Yueming. A hybrid differential evolution algorithm with multiple search strategies for large-scale optimization[J]. Journal of South China University of Technology:Natural Science Edition, 2017, 45(3): 97–103. doi: 10.3969/j.issn.1000-565X.2017.03.014
    MIRJALILI S and LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51–67. doi: 10.1016/j.advengsoft.2016.01.008
    龙文, 蔡绍洪, 焦建军, 等. 求解大规模优化问题的改进鲸鱼优化算法[J]. 系统工程理论与实践, 2017, 37(11): 2983–2994. doi: 10.12011/1000-6788(2017)11-2983-12

    LONG Wen, CAI Shaohong, JIAO Jianjun, et al. Improved whale optimization algorithm for large scale optimization problems[J]. Systems Engineering-Theory &Practice, 2017, 37(11): 2983–2994. doi: 10.12011/1000-6788(2017)11-2983-12
    MIRJALILI S, MIRJALILI S M, and LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46–61. doi: 10.1016/j.advengsoft.2013.12.007
    姜天华. 混合灰狼优化算法求解柔性作业车间调度问题[J]. 控制与决策, 2018, 33(3): 503–508. doi: 10.13195/j.kzyjc.2017.0124

    JIANG Tianhua. Flexible job shop scheduling problem with hybrid grey wolf optimization algorithm[J]. Control and Decision, 2018, 33(3): 503–508. doi: 10.13195/j.kzyjc.2017.0124
    梁静, 刘睿, 瞿博阳, 等. 进化算法在大规模优化问题中的应用综述[J]. 郑州大学学报: 工学版, 2018, 39(3): 15–21. doi: 10.13705/j.issn.1671-6833.2017.06.016

    LIANG Jing, LIU Rui, QU Boyang, et al. A survey of evolutionary algorithms for large scale optimization problem[J]. Journal of Zhengzhou University:Engineering Science, 2018, 39(3): 15–21. doi: 10.13705/j.issn.1671-6833.2017.06.016
    MIRJALILI S, MIRJALILI S M, and HATAMLOU A. Multi-verse optimizer: A nature-inspired algorithm for global optimization[J]. Neural Computing and Applications, 2016, 27(2): 495–513. doi: 10.1007/s00521-015-1870-7
    赵世杰, 高雷阜, 徒君, 等. 耦合横纵向个体更新策略的改进MVO算法[J]. 控制与决策, 2018, 33(8): 1422–1428. doi: 10.13195/j.kzyjc.2017.0441

    ZHAO Shijie, GAO Leifu, TU Jun, et al. Improved multi verse optimizer coupling horizontal-and-vertical individual updated strategies[J]. Control and Decision, 2018, 33(8): 1422–1428. doi: 10.13195/j.kzyjc.2017.0441
    CHOPRA N and SHARMA J. Multi-objective optimum load dispatch using Multi-verse optimization[C]. Proceedings of the 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems, Delhi, India, 2016: 1–5.
    HU Cong, LI Zhi, ZHOU Tian, et al. A multi-verse optimizer with levy flights for numerical optimization and its application in test scheduling for network-on-chip[J]. PLOS One, 2016, 11(12): e0167341. doi: 10.1371/journal.pone.0167341
    FARIS H, ALJARAH I, and MIRJALILI S. Training feedforward neural networks using multi-verse optimizer for binary classification problems[J]. Applied Intelligence, 2016, 45(2): 322–332. doi: 10.1007/s10489-016-0767-1
    JANGIR P, PARMAR S A, TRIVEDI I N, et al. A novel hybrid particle swarm optimizer with multi verse optimizer for global numerical optimization and optimal reactive power dispatch problem[J]. Engineering Science and Technology, An International Journal, 2017, 20(2): 570–586. doi: 10.1016/j.jestch.2016.10.007
    ALI E E, EL-HAMEED M A, EL-FERGANY A A, et al. Parameter extraction of photovoltaic generating units using multi-verse optimizer[J]. Sustainable Energy Technologies and Assessments, 2016, 17: 68–76. doi: 10.1016/j.seta.2016.08.004
    MIRJALILI S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems[J]. Neural Computing and Applications, 2016, 27(4): 1053–1073. doi: 10.1007/s00521-015-1920-1
    ASKARZADEH A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm[J]. Computers & Structures, 2016, 169: 1–12. doi: 10.1016/j.compstruc.2016.03.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(9)

    Article Metrics

    Article views (3109) PDF downloads(117) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return