Citation: | Changyu HU, Ling WANG, Dongqiang ZHU. Sparse ISAR Imaging Exploiting Dictionary Learning[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1735-1742. doi: 10.11999/JEIT180747 |
PRICKETT M J and CHEN C C. Principles of inverse synthetic aperture radar /ISAR/ imaging[C]. IEEE Electronics and Aerospace Systems Conference, New York, USA, 1980: 340–345.
|
GENG Minming, TIAN Ye, FANG Jian, et al. Implementation of GPU-based iterative shrinkage-thresholding algorithm in sparse microwave imaging[C]. Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 3863–3866.
|
CETIN M and KARL W C. Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization[J]. IEEE Transactions on Image Processing, 2001, 10(4): 623–631. doi: 10.1109/83.913596
|
汪玲, 朱栋强, 马凯莉, 等. 空间目标卡尔曼滤波稀疏成像方法[J]. 电子与信息学报, 2018, 40(4): 846–852. doi: 10.11999/JEIT170319
WANG Ling, ZHU Dongqiang, MA Kaili, et al. Sparse imaging of space targets using Kalman filter[J]. Journal of Electronics &Information Technology, 2018, 40(4): 846–852. doi: 10.11999/JEIT170319
|
徐宗本, 吴一戎, 张冰尘, 等. 基于L1/2正则化理论的稀疏雷达成像[J]. 科学通报, 2018, 63(14): 1306–1319. doi: 10.1360/N972018-00372
XU Zongben, WU Yirong, ZHANG Bingchen, et al. Sparse radar imaging based on L1/2 regularization theory[J]. Chinese Science Bulletin, 2018, 63(14): 1306–1319. doi: 10.1360/N972018-00372
|
HASANKHAN M J, SAMADI S, and ÇETIN M. Sparse representation-based algorithm for joint SAR image formation and autofocus[J]. Signal, Image and Video Processing, 2017, 11(4): 589–596. doi: 10.1007/s11760-016-0998-y
|
BI Hui, BI Guoan, ZHANG Bingchen, et al. Complex-image-based sparse SAR imaging and its equivalence[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5006–5014. doi: 10.1109/TGRS.2018.2803802
|
SAMADI S, CETIN M, and MASNADI-SHIRAZI M A. Sparse representation-based synthetic aperture radar imaging[J]. IET Radar, Sonar & Navigation, 2011, 5(2): 182–193. doi: 10.1049/iet-rsn.2009.0235
|
WANG Ling, LOFFELD O, MA Kaili, et al. Sparse ISAR imaging using a greedy kalman filtering approach[J]. Signal Processing, 2017, 138: 1–10. doi: 10.1016/j.sigpro.2017.03.002
|
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
|
BARANIUK R and STEEGHS P. Compressive radar imaging[C]. Proceedings of 2007 IEEE Radar Conference, Boston, USA, 2007: 128–133.
|
WANG Lu, ZHAO Lifan, and BI Guoan. Structured sparse representation based ISAR imaging[C]. Proceedings of the 2014 15th International Radar Symposium, Gdansk, Poland, 2014: 1–5.
|
YANKELEVSKY Y and ELAD M. Dictionary learning for high dimensional graph signals[C]. Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Canada, 2018: 4669–4673.
|
YANKELEVSKY Y and ELAD M. Structure-aware classification using supervised dictionary learning[C]. Proceedings of 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, USA, 2017: 4421–4425.
|
SOĞANLUI A and ÇETIN M. Dictionary learning for sparsity-driven SAR image reconstruction[C]. Proceedings of 2014 IEEE International Conference on Image Processing, Paris, France, 2014: 1693–1697.
|
JIANG Changhui, ZHANG Qiyang, FAN Rui, et al. Super-resolution CT image reconstruction based on dictionary learning and sparse representation[J]. Scientific Reports, 2018, 8(1): 8799. doi: 10.1038/s41598-018-27261-z
|
AHARON M, ELAD M, and BRUCKSTEIN A. rmK-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311–4322. doi: 10.1109/TSP.2006.881199
|
PATI Y C, REZAIIFAR R, and KRISHNAPRASAD P S. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[C]. Proceedings of the 27th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 1993: 40–44.
|
WANG Ling and LOFFELD O. ISAR imaging using a null space ℓ1minimizing Kalman filter approach[C]. Proceedings of the 2016 4th International Workshop on Compressed Sensing Theory and Its Applications to Radar, Sonar and Remote Sensing, Aachen, Germany, 2016: 232–236.
|
AHARON M and ELAD M. Sparse and redundant modeling of image content using an image-signature-dictionary[J]. SIAM Journal on Imaging Sciences, 2008, 1(3): 228–247. doi: 10.1137/07070156X
|
ZHU Daiyin, WANG Ling, YU Yusheng, et al. Robust ISAR range alignment via minimizing the entropy of the average range profile[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2): 204–208. doi: 10.1109/LGRS.2008.2010562
|
汪玲, 朱岱寅, 朱兆达. 基于SAR实测数据的舰船成像研究[J]. 电子与信息学报, 2007, 29(2): 401–404.
WANG Ling, ZHU Daiyin, and ZHU Zhaoda. Study on ship imaging using SAR real data[J]. Journal of Electronics &Information Technology, 2007, 29(2): 401–404.
|
HU Changyu, WANG Ling, and LOFFELD O. Inverse synthetic aperture radar imaging exploiting dictionary learning[C]. Proceedings of 2018 IEEE Radar Conference, Oklahoma City, USA, 2018: 1084–1088.
|
LOFFELD O, ESPETER T, and CONDE M H. From weighted least squares estimation to sparse CS reconstruction[C]. Proceedings of the 2015 3rd International Workshop on Compressed Sensing Theory and Its Applications to Radar, Sonar and Remote Sensing, Pisa, Italy, 2015: 149–153.
|