Advanced Search
Volume 41 Issue 9
Sep.  2019
Turn off MathJax
Article Contents
Ying YU, Qinglong WU, Kaixuan SHAO, Yuxing KANG, Jian YANG. Saliency Detection Using Wavelet Transform in Hypercomplex Domain[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2231-2238. doi: 10.11999/JEIT180738
Citation: Ying YU, Qinglong WU, Kaixuan SHAO, Yuxing KANG, Jian YANG. Saliency Detection Using Wavelet Transform in Hypercomplex Domain[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2231-2238. doi: 10.11999/JEIT180738

Saliency Detection Using Wavelet Transform in Hypercomplex Domain

doi: 10.11999/JEIT180738
Funds:  The National Natural Science Foundation of China (61263048), Yunnan Province Applied Basic Research Project (2018FB102), The “Young and Middle-Aged Backbone Teachers” Cultivation Plan of Yunnan University (XT412003)
  • Received Date: 2018-07-20
  • Rev Recd Date: 2019-02-17
  • Available Online: 2019-03-16
  • Publish Date: 2019-09-10
  • To solve the incompleteness of the salient region obtained by the existing saliency detection method in the frequency domain, a frequency saliency detection method of multi-scale analysis is proposed. Firstly, the quaternion hypercomplex is constructed by the input image feature channels. Then, the multi-scale decomposition of the quaternion amplitude spectrum is performed by wavelet transform, and the multi-scale visual saliency map is calculated. Finally, the better saliency map is fused based on the evaluation function, and central bias is used to generate the final visual saliency map. The experimental results show that the proposed method can effectively suppress the background interference, find significant target quickly and accurately, and have high detection accuracy.
  • loading
  • YAO Haishan and LI Chaoyi. Clustered organization of neurons with similar extra-receptive field properties in the primary visual cortex[J]. Neuron, 2002, 35(3): 547–553. doi: 10.1016/S0896-6273(02)00782-1
    ITTI L, KOCH C, and NIEBUR E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254–1259. doi: 10.1109/34.730558
    ITTI L and KOCH C. Computational modelling of visual attention[J]. Nature Reviews Neuroscience, 2001, 2(3): 194–203. doi: 10.1038/35058500
    ZHANG Lingyun, TONG M H, MARKS T K, et al. SUN: A Bayesian framework for saliency using natural statistics[J]. Journal of Vision, 2008, 8(7): 32, 1–20. doi: 10.1167/8.7.32
    ACHANTA R and SÜSSTRUNK S. Saliency detection using maximum symmetric surround[C]. 2010 IEEE International Conference on Image Processing, Hong Kong, China, 2010: 2653–2656.
    CHENG Mingming, ZHANG Guoxin, MITRA N J, et al. Global contrast based salient region detection[C]. CVPR 2011, Colorado Springs, USA, 2011: 409–416.
    CHENG Mingming, MITRA N J, HUANG Xiaolei, et al. Global contrast based salient region detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 569–582. doi: 10.1109/TPAMI.2014.2345401
    ZHANG Lihe, YANG Chuan, and LU Huchuan. Ranking saliency[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(9): 1892–1904. doi: 10.1109/TPAMI.2016.2609426
    AZAZA A and DOUIK A. Saliency detection based object proposal[C]. The 14th International Multi-Conference on Systems, Signals & Devices, Marrakech, Morocco, 2017: 597–600.
    WANG Wenguan and SHEN Jianbing. Deep visual attention prediction[J]. IEEE Transactions on Image Processing, 2018, 27(5): 2368–2378. doi: 10.1109/TIP.2017.2787612
    CAO Feilong, LIU Yuehua, and WANG Dianhui. Efficient saliency detection using convolutional neural networks with feature selection[J]. Information Sciences, 2018, 456: 34–49. doi: 10.1016/j.ins.2018.05.006
    吴泽民, 王军, 胡磊, 等. 基于卷积神经网络与全局优化的协同显著性检测[J]. 电子与信息学报, 2018, 40(12): 2896–2904. doi: 10.11999/JEIT180241

    WU Zemin, WANG Jun, HU Lei, et al. Co-saliency detection based on convolutional neural network and global optimization[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2896–2904. doi: 10.11999/JEIT180241
    HOU Xiaodi and ZHANG Liqing. Saliency detection: A spectral residual approach[C]. 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, USA, 2007: 1–8.
    GUO Chenlei, MA Qi, and ZHANG Liming. Spatio-temporal saliency detection using phase spectrum of quaternion Fourier transform[C]. Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008: 1–8.
    LI Jian, LEVINE M D, AN Xiangjing, et al. Visual saliency based on scale-space analysis in the frequency domain[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(4): 996–1010. doi: 10.1109/TPAMI.2012.147
    SANGWINE S J. Fourier transforms of colour images using quaternion or hypercomplex, numbers[J]. Electronics Letters, 1996, 32(21): 1979–1980. doi: 10.1049/el:19961331
    ELL T A and SANGWINE S J. Hypercomplex Fourier transforms of color images[J]. IEEE Transactions on Image Processing, 2007, 16(1): 22–35. doi: 10.1109/TIP.2006.884955
    ANTONINI M, BARLAUD M, MATHIEU P, et al. Image coding using wavelet transform[J]. IEEE Transactions on Image Processing, 1992, 1(2): 205–220. doi: 10.1109/83.136597
    BIAN Peng and ZHANG Liming. Visual saliency: A biologically plausible contourlet-like frequency domain approach[J]. Cognitive Neurodynamics, 2010, 4(3): 189–198. doi: 10.1007/s11571-010-9122-0
    GOFERMAN S, ZELNIK-MANOR L, and TAL A. Context-aware saliency detection[C]. Processing of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2376–2383.
    GOFERMAN S, ZELNIK-MANOR L, and TAL A. Context-aware saliency detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10): 1915–1926. doi: 10.1109/TPAMI.2011.272
    DAVIS J and GOADRICH M. The relationship between precision-recall and ROC curves[C]. Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, USA, 2006: 233–240.
    BRUCE N D B and TSOTSOS J K. Saliency, attention, and visual search: An information theoretic approach[J]. Journal of Vision, 2009, 9(3): 5, 1–24. doi: 10.1167/9.3.5.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (3143) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return