Advanced Search
Volume 42 Issue 2
Feb.  2020
Turn off MathJax
Article Contents
You MA, Shuze JIA, Xiangang ZHAO, Xiaohu FENG, Cunqun FAN, Aijun ZHU. Missing Telemetry Data Prediction Algorithm via Tensor Factorization[J]. Journal of Electronics & Information Technology, 2020, 42(2): 403-409. doi: 10.11999/JEIT180728
Citation: You MA, Shuze JIA, Xiangang ZHAO, Xiaohu FENG, Cunqun FAN, Aijun ZHU. Missing Telemetry Data Prediction Algorithm via Tensor Factorization[J]. Journal of Electronics & Information Technology, 2020, 42(2): 403-409. doi: 10.11999/JEIT180728

Missing Telemetry Data Prediction Algorithm via Tensor Factorization

doi: 10.11999/JEIT180728
Funds:  The National Natural Science Foundation of China (61602126), The National 863 Plan Project (2011AA12A104)
  • Received Date: 2018-07-19
  • Rev Recd Date: 2019-04-20
  • Available Online: 2019-09-27
  • Publish Date: 2020-02-19
  • Satellite health monitoring is an important concern for satellite security, for which satellite telemetry data is the only source of data. Therefore, accurate prediction of missing data of satellite telemetry is an important forward-looking approach for satellite health diagnosis. For the high-dimensional structure formed by the satellite multi-component system, multi-instrument and multi-monitoring index, the Tensor Factorization based Prediction (TFP) algorithm for missing telemetry data is proposed. The proposed algorithm surpasses most existing methods, which can only be applied to low-dimensional data or specific dimension. The proposed algorithm makes accurate predictions by modeling the telemetry data as a Tensor to integrally utilize its high-dimensional feature; Computing the component matrixes via Tensor Factorization to reconstruct the Tensor which gives the predictions of the missing data; An efficient optimization algorithm is proposed to implement the related tensor calculations, for which the optimal parameter settings are strictly theoretically deduced. Experiments show that the proposed algorithm has better prediction accuracy than the most existing algorithms.

  • loading
  • 李平, 张路遥, 曹霞, 等. 基于潜在主题的混合上下文推荐算法[J]. 电子与信息学报, 2018, 40(4): 957–963. doi: 10.11999/JEIT170623

    LI Ping, ZHANG Luyao, CAO Xia, et al. Hybrid context recommendation algorithm based on latent topic[J]. Journal of Electronics &Information Technology, 2018, 40(4): 957–963. doi: 10.11999/JEIT170623
    CHEN I F and LU Chijie. Sales forecasting by combining clustering and machine-learning techniques for computer retailing[J]. Neural Computing and Applications, 2017, 28(9): 2633–2647. doi: 10.1007/s00521-016-2215-x
    MA You, WANG Shangguang, HUNG P C K, et al. A highly accurate prediction algorithm for unknown Web service QoS values[J]. IEEE Transactions on Services Computing, 2016, 9(4): 511–523. doi: 10.1109/TSC.2015.2407877
    马友, 王尚广, 孙其博, 等. 一种综合考虑主客观权重的Web服务QoS度量算法[J]. 软件学报, 2014, 25(11): 2473–2485. doi: 10.13328/j.cnki.jos.004508

    MA You, WANG Shangguang, SUN Qibo, et al. Web service quality metric algorithm employing objective and subjective weight[J]. Journal of Software, 2014, 25(11): 2473–2485. doi: 10.13328/j.cnki.jos.004508
    DING Shuai, LI Yeqing, WU Desheng, et al. Time-aware cloud service recommendation using similarity-enhanced collaborative filtering and ARIMA model[J]. Decision Support Systems, 2018, 107: 103–115. doi: 10.1016/j.dss.2017.12.012
    KUANG Li, YU Long, HUANG Lan, et al. A personalized QoS prediction approach for CPS service recommendation based on reputation and location-aware collaborative filtering[J]. Sensors, 2018, 18(5): 1556. doi: 10.3390/s18051556
    COLOMO-PALACIOS R, GARCÍA-PEÑALVO F J, STANTCHEV V, et al. Towards a social and context-aware mobile recommendation system for tourism[J]. Pervasive and Mobile Computing, 2017, 38: 505–515. doi: 10.1016/j.pmcj.2016.03.001
    IGEL C and HÜSKEN M. Improving the Rprop learning algorithm[C]. The 2nd International Symposium on Neural Computation, Berlin, Germany, 2000: 115–121.
    GLIGORIJEVIĆ V, PANAGAKIS Y, and ZAFEIRIOU S. Non-negative matrix factorizations for multiplex network analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(4): 928–940. doi: 10.1109/TPAMI.2018.2821146
    MA Wenping, WU Yue, and GONG Maoguo. Local probabilistic matrix factorization for personal recommendation[C]. The 13th International Conference on Computational Intelligence and Security, Hong Kong, China, 2017: 97–101. doi: 10.1109/CIS.2017.00029
    SHAO Lingshuang, ZHANG Jing, WEI Yong, et al. Personalized QoS prediction for web services via collaborative filtering[C]. The IEEE International Conference on Web Services, Salt Lake City, USA, 2007: 439–446. doi: 10.1109/ICWS.2007.140.
    SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]. The 10th International Conference on World Wide Web, Hong Kong, China, 2001: 285–295. doi: 10.1145/371920.372071.
    KANG M G and KATSAGGELOS A K. General choice of the regularization functional in regularized image restoration[J]. IEEE Transactions on Image Processing, 1995, 4(5): 594–602. doi: 10.1109/83.382494
    KATSAGGELOS A K, BIEMOND J, SCHAFER R W, et al. A regularized iterative image restoration algorithm[J]. IEEE Transactions on Signal Processing, 1991, 39(4): 914–929. doi: 10.1109/78.80914
    MILLER K. Least squares methods for ill-posed problems with a prescribed bound[J]. SIAM Journal on Mathematical Analysis, 1970, 1(1): 52–74. doi: 10.1137/0501006
    KOLDA T G and BADER B W. Tensor decompositions and applications[J]. SIAM Review, 2009, 51(3): 455–500. doi: 10.1137/07070111X
    COMON P, TEN BERGE J M, DE LATHAUWER L, et al. Generic and typical ranks of multi-way arrays[J]. Linear Algebra and Its Applications, 2009, 430(11/12): 2997–3007. doi: 10.1016/j.laa.2009.01.014
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(2)

    Article Metrics

    Article views (2837) PDF downloads(104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return