Citation: | Hongchang CHEN, Tuosiyu MING, Shuxin LIU, Chao GAO. Semantic Summarization of Reconstructed Abstract Meaning Representation Graph Structure Based on Integer Linear Pragramming[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1674-1681. doi: 10.11999/JEIT180720 |
LYNN H M, CHOI C, and KIM P. An improved method of automatic text summarization for web contents using lexical chain with semantic-related terms[J]. Soft Computing, 2018, 22(12): 4013–4023. doi: 10.1007/s00500-017-2612-9
|
SHETTY K and KALLIMANI J S. Automatic extractive text summarization using K-means clustering[C]. International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), Mysuru, India, 2017: 1–9.
|
YU Shanshan, SU Jindian, LI Pengfei, et al. Towards high performance text mining: A TextRank-based method for automatic text summarization[J]. International Journal of Grid and High Performance Computing (IJGHPC)
|
NGUYEN-HOANG T A, NGUYEN K, and TRAN Q V. TSGVi: A graph-based summarization system for Vietnamese documents[J]. Journal of Ambient Intelligence and Humanized Computing, 2012, 3(4): 305–313. doi: 10.1007/s12652-012-0143-x
|
KHAN A, SALIM N, FARMAN H, et al. Abstractive text summarization based on improved semantic graph approach[J]. International Journal of Parallel Programming, 2018: 1–25. doi: 10.1007/s10766-018-0560-3
|
BANARESU L, BONIAL C, CAI S, et al. Abstract meaning representation for sembanking[C]. Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse, Sofia, Bulgaria, 2013: 178–186.
|
LIU Fei, FLANIGAN J, THOMSON S, et al. Toward abstractive summarization using semantic representations[C]. Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Denver, USA, 2015: 1077–1086.
|
SONG Linfeng, PENG Xiaochang, ZHANG Yue, et al. AMR-to-text generation with synchronous node replacement grammar[C]. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Canada, 2017: 7–13.
|
KONSTAS I, IYER S, YATSKAR M, et al. Neural AMR: Sequence-to-sequence models for parsing and generation[C]. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Canada, 2017: 146–157.
|
明拓思宇, 陈鸿昶, 黄瑞阳, 等. 一种基于加权AMR图的语义子图预测摘要算法[J]. 计算机工程, 2018, 44(10): 292–297. doi: 10.19678/j.issn.1000-3428.0050770
MING Tuosiyu, CHEN Hongchang, HUANG Ruiyang, et al. A semantic subgraph predictive summary algorithm based on improved AMR graph[J]. Computer Engineering, 2018, 44(10): 292–297. doi: 10.19678/j.issn.1000-3428.0050770
|
COLLINS M. Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms[C]. Proceedings of the ACL-02 conference on Empirical Methods in Natural Language Processing, Philadelphia, USA, 2002, 10: 1–8.
|
HERMANN K M, KOČISKÝ T, GREFENSTETTE E, et al. Teaching machines to read and comprehend[C]. Proceeding NIPS’15 Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015, 1: 1693–1701.
|
LIN Chinyew. ROUGE: A package for automatic evaluation of summaries[C]. Text Summarization Branches Out: Proceedings of the ACL-04 Workshop, Barcelona, Spain, 2004, 10: 74–81.
|
CAI Shu and KNIGHT K. Smatch: An evaluation metric for semantic feature structures[C]. Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, Sofia, Bulgaria, 2013, 2: 748–752.
|
SEE A, LIU P J, and MANNING C D. Get to the point: Summarization with pointer-generator networks[C]. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Canada, 2017, 1: 1073–1083.
|
TAN Jiwei, WAN Xiaojun, and XIAO Jianguo. Abstractive document summarization with a graph-based attentional neural model[C]. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Canada, 2017, 1: 1171–1181.
|