Advanced Search
Volume 41 Issue 6
Jun.  2019
Turn off MathJax
Article Contents
Ye ZHANG, Ting XU, Dingzhong FENG, Meixian JIANG, Guanghua WU. Research on Faster RCNN Object Detection Based on Hard Example Mining[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1496-1502. doi: 10.11999/JEIT180702
Citation: Ye ZHANG, Ting XU, Dingzhong FENG, Meixian JIANG, Guanghua WU. Research on Faster RCNN Object Detection Based on Hard Example Mining[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1496-1502. doi: 10.11999/JEIT180702

Research on Faster RCNN Object Detection Based on Hard Example Mining

doi: 10.11999/JEIT180702
Funds:  The National Natrual Science Foundation of China (51605442), Science Technology Department of Zhejiang Province (LGN18G010002)
  • Received Date: 2018-07-13
  • Rev Recd Date: 2019-01-28
  • Available Online: 2019-02-18
  • Publish Date: 2019-06-01
  • Because of the classic Faster RCNN training proccess with too many difficult training samples and low recall rate problem, a method which combines the techniques of Online Hard Example Mining (OHEM) and Hard Negative Example Mining (HNEM) is adopted, which carries out the error transfer for the difficult samples using its corresponding maximum loss value from real-time filtering. It solves the problem of low detection of hard example and improves the efficiency of the model training. To improve the recall rate and generalization of the model, an improved Non-Maximum Suppression (NMS) algorithm is proposed by setting confidence thresholds penalty function; In addition, multi-scale training and data augmentation are also introduced. Finally, the results before and after improvement are compared: Sensibility experiments show that the algorithm achieves good results in VOC2007 data set and VOC2012 data set, with the mean Average Percision (mAP) increasing from 69.9% to 74.40%, and 70.4% to 79.3% respectively, which demonstrates strongly the superiority of the algorithm.
  • loading
  • 吕博云. 数字图像处理技术及应用研究[J]. 科技与创新, 2018(2): 146–147. doi: 10.15913/j.cnki.kjycx.2018.02.146

    LÜ Boyun. Research on the technology and application of digital image processing[J]. Science and Technology &Innovation, 2018(2): 146–147. doi: 10.15913/j.cnki.kjycx.2018.02.146
    王湘新, 时洋, 文梅. CNN卷积计算在移动GPU上的加速研究[J]. 计算机工程与科学, 2018, 40(1): 34–39. doi: 10.3969/j.issn.1007-130X.2018.01.005

    WANG Xiangxin, SHI Yang, and WEN Mei. Accelerating CNN on mobile GPU[J]. Computer Engineering &Science, 2018, 40(1): 34–39. doi: 10.3969/j.issn.1007-130X.2018.01.005
    胡炎, 单子力, 高峰. 基于Faster-RCNN和多分辨率SAR的海上舰船目标检测[J]. 无线电工程, 2018, 48(2): 96–100. doi: 10.3969/j.issn.1003-3106.2018.02.04

    HU Yan, SHAN Zili, and GAO Feng. Ship detection based on faster-RCNN and multiresolution SAR[J]. Radio Engineering, 2018, 48(2): 96–100. doi: 10.3969/j.issn.1003-3106.2018.02.04
    GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587. doi: 10.1109/CVPR.2014.81.
    REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
    FELZENSZWALB P, MCALLESTER D, and RAMANAN D. A discriminatively trained, multiscale, deformable part model[C]. Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008: 1–8. doi: 10.1109/CVPR.2008.4587597.
    YAN Junjie, LEI Zhen, WEN Longyin, et al. The fastest deformable part model for object detection[C]. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2497–2504.
    FORSYTH D. Object detection with discriminatively trained part-based models[J]. Computer, 2014, 47(2): 6–7. doi: 10.1109/MC.2014.42
    DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 886–893. doi: 10.1109/CVPR.2005.177.
    WANG Xiaoyu, HAN T X, and YAN Shuicheng. An HOG-LBP human detector with partial occlusion handling[C]. Proceedings of 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 2009: 32–39. doi: 10.1109/ICCV.2009.5459207.
    ERHAN D, SZEGEDY C, TOSHEV A, et al. Scalable object detection using deep neural networks[C]. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2155–2162. doi: 10.1109/CVPR.2014.276.
    NEUBECK A and VAN GOOL L. Efficient non-maximum suppression[C]. Proceedings of the 18th International Conference on Pattern Recognition, Hongkong, China, 2006: 850–855. doi: 10.1109/ICPR.2006.479.
    李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012: 18–23.

    LI Hang. Statistical Learning Method[M]. Beijing: Tsinghua University Press, 2012: 18–23.
    周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 23–35.

    ZHOU Zhihua. Machine Learning[M]. Beijing: Tsinghua University Press, 2016: 23–35.
    SUN Changming and VALLOTTON P. Fast linear feature detection using multiple directional non-maximum suppression[J]. Journal of Microscopy, 2009, 234(2): 147–157. doi: 10.1111/jmi.2009.234.issue-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views (2885) PDF downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return