Citation: | Chao WANG, Yanfei WANG, Qi WANG, Xueli ZHAN. Velocity Estimation of Moving Targets Based on Least Square Fitting of High-resolution SAR Echo Sequences[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1055-1062. doi: 10.11999/JEIT180695 |
Velocity estimation of moving targets is a key part of ground moving target imaging and positioning in airborne single-antenna high-resolution SAR system. In order to solute the defects of traditional algorithms, such as high computation brought by searching and interpolation and low reliability caused by range cell migration, a novel method based on least square fitting of echo sequence is proposed. Range changes between adjacent echo sequences are extracted using envelope correlation, and coefficients of range change equation are obtained by least square linear fitting, from which radial velocity and along-track velocity can be derived. Compared with the traditional algorithms, the new method has less computation and can work without RCMC. The mathematical model is presented and the principle of parameter selection is provided, and accuracy, computation and applicable conditions of the algorithm are analyzed. The effectiveness of the proposed algorithm is validated by simulation and real data.
RANEY R K. Synthetic aperture imaging radar and moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1971, AES-7(3): 499–505. doi: 10.1109/TAES.1971.310292
|
LI Yake, WANG Yanfei, and LIU Chang. Detect and autofocus the moving target by its range walk in time domain[C]. Proceedings of 2011 International Conference on Wireless Communications and Signal Processing, Nanjing, China, 2011: 1-5. doi: 10.1109/WCSP.2011.6096755.
|
王智睿, 张旭东, 许稼. 基于Radon变换的SAR地面运动目标径向速度估计[J]. 清华大学学报: 自然科学版, 2015, 55(8): 860–865. doi: 10.16511/j.cnki.qhdxxb.2015.08.008
WANG Zhirui, ZHANG Xudong, and XU Jia. Radial velocity estimation based on Radon transforms for SAR images of moving ground targets[J]. Journal of Tsinghua University:Science and Technology, 2015, 55(8): 860–865. doi: 10.16511/j.cnki.qhdxxb.2015.08.008
|
SAMCZYNSKI P and KULPA K S. Coherent MapDrift technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3): 1505–1517. doi: 10.1109/TGRS.2009.2032241
|
李亚超, 周峰, 邢孟道, 等. 一种直升机的舰船Dechirp实测数据SAR成像方法[J]. 电子与信息学报, 2007, 29(8): 1794–1798. doi: 10.3724/SP.J.1146.2005.01535
LI Yachao, ZHOU Feng, XING Mengdao, et al. An effective method for ship dechirp data imaging in helicopter SAR system[J]. Journal of Electronics &Information Technology, 2007, 29(8): 1794–1798. doi: 10.3724/SP.J.1146.2005.01535
|
HUANG Penghui, LIAO Guisheng, YANG Zhiwei, et al. A fast SAR imaging method for ground moving target using a second-order WVD transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 1940–1956. doi: 10.1109/TGRS.2015.2490582
|
ZHOU F, WU R, XING M, et al. Approach for single channel SAR ground moving target imaging and motion parameter estimation[J]. IET Radar, Sonar & Navigation, 2007, 1(1): 59–66. doi: 10.1049/iet-rsn:20060040
|
YANG Jiefang, ZHANG Yunhua, and KANG Xueyan. A Doppler ambiguity tolerated algorithm for airborne SAR ground moving target imaging and motion parameters estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12): 2398–2402. doi: 10.1109/LGRS.2015.2478799
|
KIRSCHT M. Detection and velocity estimation of moving objects in a sequence of single-look SAR images[C]. Proceedings of 1996 International Geoscience and Remote Sensing Symposium, Lincoln, USA, 1996: 333–335.
|
盛蔚, 毛士艺. 一种合成孔径雷达对地面运动目标成像和精确定位的算法[J]. 电子与信息学报, 2004, 26(4): 598–606.
SHENG Wei and MAO Shiyi. An effective method for ground moving target imaging and location in SAR system[J]. Journal of Electronics &Information Technology, 2004, 26(4): 598–606.
|
WANG Zhirui, XIA Xianggen, XU Jia, et al. Ground moving target imaging based on 2-D velocity search in high resolution SAR[C]. Proceedings of 2017 IEEE Radar Conference, Seattle, USA, 2017: 68–72.
|
GU Dandan, LIANG Zichang, WU Yajun, et al. Efficient motion compensation of moving targets in SAR imaging[C]. Proceedings of 2017 International Applied Computational Electromagnetics Society Symposium, Suzhou, China, 2017: 1–2.
|
SHI Hongyin, YANG Xiaoyan, ZHOU Qiuxiao, et al. SAR slow moving target imaging based on over-sampling smooth algorithm[J]. Chinese Journal of Electronics, 2017, 26(4): 876–882. doi: 10.1049/cje.2017.06.005
|
SU Jia, TAO Haihong, WANG Ling, et al. Coherently integrated cubic function based Doppler parameters estimation for moving-target imaging[C]. Proceedings of 2017 International Applied Computational Electromagnetics Society Symposium, Suzhou, China, 2017: 1–2.
|
LI Dong, ZHAN Muyang, SU Jia, et al. Performances analysis of coherently integrated CPF for LFM signal under low SNR and its application to ground moving target imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6402–6419. doi: 10.1109/TGRS.2017.2727508
|
WANG Hanyun and JIANG Yicheng. Real-time parameter estimation for SAR moving target based on WVD slice and FrFT[J]. Electronics Letters, 2018, 54(1): 47–49. doi: 10.1049/el.2017.1740
|
LI Zhongyu, WU Junjie, LIU Zhutian, et al. An optimal 2-D spectrum matching method for SAR ground moving target imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 5961–5974. doi: 10.1109/TGRS.2018.2829166
|
DELISLE G Y and WU Haiqing. Moving target imaging and trajectory computation using ISAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 887–899. doi: 10.1109/7.303757
|
STRUTZ T. Data Fitting and Uncertainty: A Practical Introduction to Weighted Least Squares and Beyond[M]. Wiesbaden, Vieweg + Teubner, 2011: 89–91.
|
王琦, 王岩飞. 利用短时FFT的距离-多普勒域SAR运动目标检测[J]. 电子与信息学报, 2006, 28(4): 628–631.
WANG Qi and WANG Yanfei. Moving target detection with short time FFT for SAR[J]. Journal of Electronics &Information Technology, 2006, 28(4): 628–631.
|