Citation: | Hongsong CHEN, Jingjiu CHEN. Recurrent Neural Networks Based Wireless Network Intrusion Detection and Classification Model Construction and Optimization[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1427-1433. doi: 10.11999/JEIT180691 |
CHEN Dong. A survey of IEEE 802.11 protocols: Comparison and prospective[C]. Proceedings of the 2017 5th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering, Chongqing, China, 2017: 589–598.
|
KOLIAS C, KAMBOURAKIS G, STAVROU A, et al. Intrusion detection in 802.11 networks: empirical evaluation of threats and a public dataset[J]. IEEE Communications Surveys & Tutorials, 2016, 18(1): 184–208. doi: 10.1109/COMST.2015.2402161
|
KOLIAS C and KAMBOURAKIS G. Organizations requested the dataset[EB/OL]. http://icsdweb.aegean.gr/awid/download.html, 2018.
|
白琮, 黄玲, 陈佳楠, 等. 面向大规模图像分类的深度卷积神经网络优化[J]. 软件学报, 2018, 29(4): 1029–1038. doi: 10.13328/j.cnki.jos.005404
BAI Cong, HUANG Ling, CHEN Jianan, et al. Optimization of deep convolutional neural network for large scale image classification[J]. Journal of Software, 2018, 29(4): 1029–1038. doi: 10.13328/j.cnki.jos.005404
|
ALOTAIBI B and ELLEITHY K. A majority voting technique for wireless intrusion detection systems[C]. Proceedings of 2016 IEEE Long Island Systems, Applications and Technology Conference, New York, USA, 2016: 1–6.
|
THING V L L. IEEE 802.11 network anomaly detection and attack classification: a deep learning approach[C]. Proceedings of 2017 IEEE Wireless Communications and Networking Conference, San Francisco, USA, 2017: 1–6.
|
YIN Chuanlong, ZHU Yuefei, FEI Jinlong, et al. A deep learning approach for intrusion detection using recurrent neural networks[J]. IEEE Access, 2017, 5: 21954–21961. doi: 10.1109/ACCESS.2017.2762418
|
陈红松, 王钢, 宋建林. 基于云计算入侵检测数据集的内网用户异常行为分类算法研究[J]. 信息网络安全, 2018, 18(3): 1–7. doi: 10.3969/j.issn.1671-1122.2018.03.001
CHEN Hongsong, WANG Gang, and SONG Jianlin. Research on anomaly behavior classification algorithm of internal network user based on cloud computing intrusion detection data set[J]. Netinfo Security, 2018, 18(3): 1–7. doi: 10.3969/j.issn.1671-1122.2018.03.001
|
MARTENS J and SUTSKEVER I. Learning recurrent neural networks with hessian-free optimization[C]. Proceedings of the 20th International Conference on Machine Learning, Washington, USA, 2011: 1033–1040.
|
ABADI M, BARHAM P, CHEN Zhifeng, et al. Tensorflow: a system for large-scale machine learning[C]. Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation, Savannah, USA, 2016: 265–283.
|
KIM J, KIM J, LE THI THU H, et al. Long short term memory recurrent neural network classifier for intrusion detection[C]. Proceedings of 2016 International Conference on Platform Technology and Service, Jeju, South Korea, 2016: 1–5.
|
ZHOU Guobing, WU Jianxin, ZHANG Chenlin, et al. Minimal gated unit for recurrent neural networks[J]. International Journal of Automation and Computing, 2016, 13(3): 226–234. doi: 10.1007/s11633-016-1006-2
|