Advanced Search
Volume 41 Issue 6
Jun.  2019
Turn off MathJax
Article Contents
Chen GUO, Tao JIAN, Congan XU, You HE, Shun SUN. Radar HRRP Target Recognition Based on Deep Multi-Scale 1D Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1302-1309. doi: 10.11999/JEIT180677
Citation: Chen GUO, Tao JIAN, Congan XU, You HE, Shun SUN. Radar HRRP Target Recognition Based on Deep Multi-Scale 1D Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1302-1309. doi: 10.11999/JEIT180677

Radar HRRP Target Recognition Based on Deep Multi-Scale 1D Convolutional Neural Network

doi: 10.11999/JEIT180677
Funds:  The National Natural Science Foundation of China (61471379, 61790551, 61102166), The Taishan Scholar Project of Shandong Province
  • Received Date: 2018-07-06
  • Rev Recd Date: 2019-01-10
  • Available Online: 2019-01-22
  • Publish Date: 2019-06-01
  • In order to meet the demand for high real-time and high generalization performance of radar recognition, a radar High Resolution Range Profile (HRRP) recognition method based on deep multi-scale one dimension convolutional neural network is proposed. The multi-scale convolutional layer that can represent the complex features of HRRP is designed based on two features of the convolution kernels which are weight sharing and extraction of different fineness features from different scales, respectively. At last, the center loss function is used to improve the separability of features. Experimental results show that the model can greatly improve the accuracy of the target recognition under non-ideal conditions and solve the problem of the target aspect sensitivity, which also has good robustness and generalization performance.
  • loading
  • DU Lan, WANG Penghui, LIU Hongwei, et al. Bayesian spatiotemporal multitask learning for radar HRRP target recognition[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3182–3196. doi: 10.1109/TSP.2011.2141664
    WANG Yu, ZHANG Liang, WANG Suixue, et al. Radar HRRP target recognition using scattering centers fuzzy matching[C]. Proceedings of 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–5. doi: 10.1109/RADAR.2016.8059195.
    PEI Bingnan and BAO Zheng. Multi-aspect radar target recognition method based on scattering centers and HMMs classifiers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(3): 1067–1074. doi: 10.1109/TAES.2005.1541451
    JIANG Yue, HAN Yubing, and SHENG Weixing. Target recognition of radar HRRP using manifold learning with feature weighting[C]. Proceedings of 2016 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition, Nanjing, China, 2016: 1–3. doi: 10.1109/iWEM.2016.7505053.
    ZHOU Daiying. Radar target HRRP recognition based on reconstructive and discriminative dictionary learning[J]. Signal Processing, 2016, 126: 52–64. doi: 10.1016/j.sigpro.2015.12.006
    冯博, 陈渤, 王鹏辉, 等. 利用稳健字典学习的雷达高分辨距离像目标识别算法[J]. 电子与信息学报, 2015, 37(6): 1457–1462. doi: 10.11999/JEIT141227

    FENG Bo, CHEN Bo, WANG Penghui, et al. Radar high resolution range profile target recognition algorithm via stable dictionary learning[J]. Journal of Electronics &Information Technology, 2015, 37(6): 1457–1462. doi: 10.11999/JEIT141227
    李龙, 刘峥. 基于核主分量相关判别分析特征提取方法的目标HRRP识别[J]. 电子与信息学报, 2018, 40(1): 173–180. doi: 10.11999/JEIT170329

    LI Long and LIU Zheng. Kernel principal component correlation and discrimination analysis feature extraction method for target HRRP recognition[J]. Journal of Electronics &Information Technology, 2018, 40(1): 173–180. doi: 10.11999/JEIT170329
    GUO Yu, XIAO Huaitie, KAN Yingzhi, et al. Learning using privileged information for HRRP-based radar target recognition[J]. IET Signal Processing, 2018, 12(2): 188–197. doi: 10.1049/iet-spr.2016.0625
    PAN Mian, JIANG Jie, KONG Qingpeng, et al. Radar HRRP target recognition based on T-SNE segmentation and discriminant deep belief network[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1609–1613. doi: 10.1109/LGRS.2017.2726098
    PAN Mian, JIANG Jie, LI Zhu, et al. Radar HRRP recognition based on discriminant deep autoencoders with small training data size[J]. Electronics Letters, 2016, 52(20): 1725–1727. doi: 10.1049/el.2016.3060
    FENG Bo, CHEN Bo, and LIU Hongwei. Radar HRRP target recognition with deep networks[J]. Pattern Recognition, 2017, 61: 379–393. doi: 10.1016/j.patcog.2016.08.012
    YAN Huaqing, ZHANG Zenghui, XIONG Gang, et al. Radar HRRP recognition based on sparse denoising autoencoder and multi-layer perceptron deep model[C]. Proceedings of the 4th International Conference on Ubiquitous Positioning, Indoor Navigation and Location Based Services, Shanghai, China, 2016: 283–288. doi: 10.1109/UPINLBS.2016.7809986.
    ZHAI Ying, CHEN Bo, ZHANG Hao, et al. Robust variational auto-encoder for radar HRRP target recognition[C]. Proceedings of the 7th International Conference on Intelligent Science and Big Data Engineering, Dalian, China, 2017: 356–367. doi: 10.1007/978-3-319-67777-4_31.
    ZHAO Feixiang, LIU Yongxiang, HUO Kai, et al. Radar HRRP target recognition based on stacked autoencoder and extreme learning machine[J]. Sensors, 2018, 18(1): 173. doi: 10.3390/s18010173
    LUNDéN J and KOIVUNEN V. Deep learning for HRRP-based target recognition in multistatic radar systems[C]. Proceedings of 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–6. doi: 10.1109/RADAR.2016.7485271.
    BENGIO Y I, GOODFELLOW I, and COURVILLE A. Deep Learning[M]. Cambridge, USA: MIT Press, 2016: 276–324.
    SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9. doi: 10.1109/CVPR.2015.7298594.
    SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]. Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, USA, 2017: 4278–4284.
    WEN Yandong, ZHANG Kaipeng, LI Zhifeng, et al. A discriminative feature learning approach for deep face recognition[C]. Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 499–515. doi: 10.1007/978-3-319-46478-7_31.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(7)

    Article Metrics

    Article views (4518) PDF downloads(258) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return