Citation: | Xinhua LU, Carles Navarro MANCHÓN, Zhongyong WANG, Chuanzong ZHANG. Channel Estimation Algorithm Using Temporal-spatial Structure for Up-link of Massive MIMO Systems[J]. Journal of Electronics & Information Technology, 2020, 42(2): 519-525. doi: 10.11999/JEIT180676 |
To deal with the estimation problem of non-stationary channel in massive Multiple-Input Multiple-Output (MIMO) up-link, the 2D channels’ sparse structure information in temporal-spatial domain is used, to design an iterative channel estimation algorithm based on Dirichlet Process (DP) and Variational Bayesian Inference (VBI), which can improve the accuracy under a lower pilot overhead and computation complexity. On account of that the stationary channel models is not suitable for massive MIMO systems anymore, a non-stationary channel prior model utilizing Dirichlet Process is constructed, which can map the physical spatial correlation channels to a probabilistic channel with the same sparse temporal vector. By applying VBI technology, a channel estimation iteration algorithm with low pilot overhead and complexity is designed. Experiment results show the proposed channel method has a better performance on the estimation accuracy than the state-of-art method, meanwhile it works robustly against the dynamic system key parameters.
MARZETTA T L. Noncooperative cellular wireless with unlimited numbers of base station antennas[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3590–3600. doi: 10.1109/TWC.2010.092810.091092
|
RUSEK F, PERSSON D, LAU B K, et al. Scaling up MIMO: opportunities and challenges with very large array[J]. IEEE Signal Processing Magazine, 2013, 30(1): 40–60. doi: 10.1109/MSP.2011.2178495
|
PAYAMI S and TUFVESSON F. Channel measurements and analysis for very large array systems at 2.6 GHz[C]. The 6th European Conference on Antennas and Propagation, Prague, Czech Republic, 2012: 433–437.
|
GAO Xiang, TUFVESSON F, and EDFORS O. Massive MIMO channels - Measurements and models[C]. Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2013: 280–284.
|
WU Shangbin, WANG Chengxiang, HAAS H, et al. A Non-stationary wideband channel model for massive MIMO communication systems[J]. IEEE Transactions on Wireless Communications, 2015, 14(3): 1434–1446. doi: 10.1109/TWC.2014.2366153
|
NGUYEN S. Compressive sensing for multi-channel and large-scale MIMO networks[D]. [Ph.D. dissertation], Concordia University, 2013.
|
QI Chenhao, HUANG Yongming, JIN Shi, et al. Sparse channel estimation based on compressed sensing for massive MIMO systems[C]. 2015 IEEE International Conference on Communications, London, UK, 2015: 4558–4563.
|
CHEN Lei, LIU An, and YUAN Xiaojun. Structured turbo compressed sensing for massive MIMO channel estimation using a Markov prior[J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 4635–4639. doi: 10.1109/TVT.2017.2787708
|
HOU Weikun and LIM C W. Structured compressive channel estimation for large-scale MISO-OFDM systems[J]. IEEE Communications Letters, 2014, 18(5): 765–768. doi: 10.1109/LCOMM.2014.030714.132630.
|
NAN Yang, ZHANG Li, and SUN Xin. Weighted compressive sensing based uplink channel estimation for time division duplex massive Multi-Input Multi-Output systems[J]. IET Communications, 2017, 11(3): 355–361. doi: 10.1049/iet-com.2016.0625
|
MASOOD M, AFIFY L H, and AL-NAFFOURI T Y. Efficient coordinated recovery of sparse channels in massive MIMO[J]. IEEE Transactions on Signal Processing, 2015, 63(1): 104–118. doi: 10.1109/TSP.2014.2369005
|
PEDERSEN N L, MANCHÓN C N, and FLEURY B H. A fast iterative Bayesian inference algorithm for sparse channel estimation[C]. 2013 IEEE International Conference on Communications, Budapest, Hungary, 2013: 4591–4596.
|
MA Jianpeng, LI Hongyan, ZHANG Shun, et al. Sparse Bayesian learning for the channel statistics of the massive MIMO systems[C]. 2017 IEEE Global Communications Conference, Singapore, 2017: 1–6.
|
GUI Guan, XU Li, and SHAN Lin. Block Bayesian sparse learning algorithms with application to estimating channels in OFDM systems[C]. 2014 International Symposium on Wireless Personal Multimedia Communications, Sydney, Australia, 2014: 238–242.
|
CHENG Xiantao, SUN Jingjing, and LI Shaoqian. Channel estimation for FDD multi-user massive MIMO: a variational Bayesian inference-based approach[J]. IEEE Transactions on Wireless Communications, 2017, 16(11): 7590–7602. doi: 10.1109/TWC.2017.2751046
|
TIPPING M. Sparse Bayesian learning and the relevance vector machine[J]. The Journal of Machine Learning Research, 2001, 1: 211–244. doi: 10.1162/15324430152748236
|
BLEI D M and JORDAN M I. Variational inference for dirichlet process mixtures[J]. Bayesian Analysis, 2006, 1(1): 121–143. doi: 10.1214/06-BA104
|
梅素玉, 王飞, 周水庚. 狄利克雷过程混合模型、扩展模型及应用[J]. 科学通报, 2012, 57(34): 3243–3257.
MEI Suyu, WANG Fei, and ZHOU Shuigeng. Dirichlet process mixture model, extensions and applications[J]. Chinese Science Bulletin (Chinese Version)
|
WANG Lu, ZHAO Lifan, BI Guoan, et al. Novel wideband DOA estimation based on sparse bayesian learning with dirichlet process priors[J]. IEEE Transactions on Signal Processing, 2016, 64(2): 275–289. doi: 10.1109/TSP.2015.2481790
|
TSE D and VISWANATH P. Fundamentals of Wireless Communication[M]. Cambridge: Cambridge University, 2004: 32–50, 348–352.
|