Citation: | Haoran LIU, Liyue ZHANG, Ruixing FAN, Haiyu WANG, Chunlan ZHANG. Bayesian Network Structure Learning Based on Improved Whale Optimization Strategy[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1434-1441. doi: 10.11999/JEIT180653 |
CONTALDI C, VAFAEE F, and NELSON P C. Bayesian network hybrid learning using an elite-guided genetic algorithm[J]. Artificial Intelligence Review, 2018. doi: 10.1007/s10462-018-9615-5
|
刘广怡, 李鸥, 宋涛, 等. 基于贝叶斯网络的无线传感网高效数据传输方法[J]. 电子与信息学报, 2016, 38(6): 1362–1367. doi: 10.11999/JEIT151027
LIU Guangyi, LI Ou, SONG Tao, et al. Energy-efficiency data transmission method in WSN based on Bayesian network[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1362–1367. doi: 10.11999/JEIT151027
|
邓歆, 孟洛明. 基于贝叶斯网络的通信网告警相关性和故障诊断模型[J]. 电子与信息学报, 2007, 29(5): 1182–1186.
DENG Xin and MENG Luoming. Bayesian networks based alarm correlation and fault diagnosis in communication networks[J]. Journal of Electronics &Information Technology, 2007, 29(5): 1182–1186.
|
CHICKERING D M. Learning Bayesian Networks is NP-complete[M]. FISHER D and LENZ H J. Learning from Data. New York: Springer, 1996: 121–130.
|
SCANAGATTA M, CORANI G, DE CAMPOS C P, et al. Approximate structure learning for large Bayesian networks[J]. Machine Learning, 2018, 107(8/10): 1209–1227. doi: 10.1007/s10994-018-5701-9
|
DENNIS D M K, WILLIAMS M R, and SIGMAN M E. Investigative probabilistic inferences of smokeless powder manufacturers utilizing a Bayesian network[J]. Forensic Chemistry, 2017, 3: 41–51. doi: 10.1016/j.forc.2016.12.001
|
LIU Hui, ZHOU Shuigeng, LAM W, et al. A new hybrid method for learning Bayesian networks: separation and reunion[J]. Knowledge-Based Systems, 2017, 121: 185–197. doi: 10.1016/j.knosys.2017.01.029
|
TSAMARDINOS I, BROWN L E, and ALIFERIS C F. The max-min hill-climbing Bayesian network structure learning algorithm[J]. Machine Learning, 2006, 65(1): 31–78. doi: 10.1007/s10994-006-6889-7
|
刘浩然, 孙美婷, 李雷, 等. 基于蚁群节点寻优的贝叶斯网络结构算法研究[J]. 仪器仪表学报, 2017, 38(1): 143–150. doi: 10.19650/j.cnki.cjsi.2017.01.019
LIU Haoran, SUN Meiting, LI Lei, et al. Study on Bayesian network structure learning algorithm based on ant colony node order optimization[J]. Chinese Journal of Scientific Instrument, 2017, 38(1): 143–150. doi: 10.19650/j.cnki.cjsi.2017.01.019
|
刘彬, 王海羽, 孙美婷, 等. 一种通过节点序寻优进行贝叶斯网络结构学习的算法[J]. 电子与信息学报, 2018, 40(5): 1234–1241. doi: 10.11999/JEIT170675
LIU Bin, WANG Haiyu, SUN Meiting, et al. Learning Bayesian network structure from node ordering searching optimal[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1234–1241. doi: 10.11999/JEIT170675
|
MIRJALILI S and LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51–67. doi: 10.1016/j.advengsoft.2016.01.008
|
MENG Qingfei, CHEN Yuehui, WANG Dong, et al. Learning bayesian networks structure based part mutual information for reconstructing gene regulatory networks[C]. Proceedings of the 13th International Conference on Intelligent Computing, Liverpool, UK, 2017: 647–654. doi: 10.1007/978-3-319-63312-1_57.
|
DE CAMPOS C P, SCANAGATTA M, CORANI G, et al. Entropy-based pruning for learning bayesian networks using BIC[J]. Artificial Intelligence, 2018, 260: 42–50. doi: 10.1016/j.artint.2018.04.002
|
ZAKHAROV V K and RODIONOV T V. Naturalness of the class of Lebesgue-Borel-Hausdorff measurable functions[J]. Mathematical Notes, 2014, 95(3/4): 500–508. doi: 10.1134/S0001434614030225
|
FANG Wei, SUN Jun, CHEN Huanhuan, et al. A decentralized quantum-inspired particle swarm optimization algorithm with cellular structured population[J]. Information Sciences, 2016, 330: 19–48. doi: 10.1016/j.ins.2015.09.055
|
陈志敏, 田梦楚, 吴盘龙, 等. 基于蝙蝠算法的粒子滤波法研究[J]. 物理学报, 2017, 66(5): 050502. doi: 10.7498/aps.66.050502
CHEN Zhimin, TIAN Mengchu, WU Panlong, et al. Intelligent particle filter based on bat algorithm[J]. Acta Physica Sinica, 2017, 66(5): 050502. doi: 10.7498/aps.66.050502
|
ADABOR E S, ACQUAAH-MENSAH G K, and ODURO F T. SAGA: A hybrid search algorithm for Bayesian network structure learning of transcriptional regulatory networks[J]. Journal of Biomedical Informatics, 2015, 53: 27–35. doi: 10.1016/j.jbi.2014.08.010
|