Advanced Search
Volume 41 Issue 5
Apr.  2019
Turn off MathJax
Article Contents
Tao LIU, Chengqian XU, Yubo LI. Constructions of Gaussian Integer Periodic Complementary Sequences Based on Difference Families[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1167-1172. doi: 10.11999/JEIT180646
Citation: Tao LIU, Chengqian XU, Yubo LI. Constructions of Gaussian Integer Periodic Complementary Sequences Based on Difference Families[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1167-1172. doi: 10.11999/JEIT180646

Constructions of Gaussian Integer Periodic Complementary Sequences Based on Difference Families

doi: 10.11999/JEIT180646
Funds:  The National Natural Science Foundation of China (61501395, 61671402)
  • Received Date: 2018-07-02
  • Rev Recd Date: 2018-12-17
  • Available Online: 2019-01-07
  • Publish Date: 2019-05-01
  • Constructions of Gaussian integer periodic complementary sequences are presented in this paper. Based on the relationship between periodic complementary sequences and difference families, the sufficient condition of the existence of Gaussian integer periodic complementary sequences is proposed at first, then Gaussian integer periodic complementary sequences with degree 2 are constructed directly. To extend the number of Gaussian integer complementary sequences, Gaussian integer complementary sequences with degree 4 are constructed based on mappings. Compared with binary complementary sequences, there are more Gaussian integer complementary sequences, as a result, the presented methods will propose an abundance of complementary sequences for communication systems.

  • loading
  • WANG Senhung and LI Chihpeng. Novel comb spectrum CDMA system using perfect Gaussian integer sequences[C]. 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 2015: 1–6.
    CHANG Ho Hsuan, LIN Shieh Chiang and LEE Chongdao. A CDMA scheme based on perfect Gaussian integer sequences[J]. International Journal of Electronics and Communications, 2017, 75(2017): 70–81. doi: 10.1016/j.aeue.2017.03.008
    WANG Senhung, LI Chihpeng, and CHANG Hohsuan, et al. A systematic method for constructing sparse Gaussian integer sequences with ideal periodic autocorrelation functions[J]. IEEE Transactions on Communications, 2016, 64(1): 365–376. doi: 10.1109/TCOMM.2015.2498185
    LI Chihpeng, WANG Senhung, and WANG Chinliang. Novel low complexity SLM schemes for PAPR reduction in OFDM systems[J]. IEEE Transactions on Signal Processing, 2010, 58(5): 2916–2921. doi: 10.1109/TSP.2010.2043142
    HU Weiwen, WANG Senhung, and LI Chihpeng. Gaussian integer sequences with ideal periodic autocorrelation functions[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 6074–6079. doi: 10.1109/TSP.2012.2210550
    YANG Yang, TANG Xiaohu, and ZHOU Zhengchun. Perfect Gaussian integer sequences of odd prime length[J]. IEEE Signal Processing Letters, 2012, 19(10): 615–618. doi: 10.1109/LSP.2012.2209642
    MA Xiu Wen, WEN Qiao Yan, ZHANG Jie, et al. New perfect Gaussian integer sequences of periodic pq[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2013, E96-A(11): 2290–2293. doi: 10.1587/transfun.E96.A.2290
    PEI Soochang and CHANG Kuowei. Perfect Gaussian integer sequences of arbitrary length[J]. IEEE Signal Processing Letters, 2015, 22(8): 1040–1044. doi: 10.1109/LSP.2014.2381642
    CHANG Hohsuan, LI Chihpeng, LEE Chongdao, et al. Perfect Gaussian integer sequences of arbitrary composite length[J]. IEEE Transactions on Information Theory, 2015, 61(7): 4107–4115. doi: 10.1109/TIT.2015.2438828
    CHEN Xinjiao, LI Chunlei, and RONG Chunming. Perfect Gaussian integer sequences from cyclic difference sets[C]. 2016 IEEE International Symposium on Information Theory (ISIT), 2016: 115–119.
    LEE Chongdao, HUANG Yupei, CHANG Yaostu, et al. Perfect Gaussian integer sequences of odd period 2m-1[J]. IEEE Signal Processing Letters, 2015, 22(7): 881–885. doi: 10.1109/LSP.2014.2375313
    Lee Chongdao, LI Chihpeng, and CHANG Hohsuan, et al. Further results on degree-2 perfect Gaussian integer sequences[J]. IET Communications, 2016, 10(12): 1542–1552. doi: 10.1049/iet-com.2015.1144
    陈晓玉, 许成谦, 李玉博. 新的完备高斯整数序列的构造方法[J]. 电子与信息学报, 2014, 36(9): 2081–2085. doi: 10.3724/SP.J.1146.2013.01697

    CHEN Xiaoyu, XU Chengqian, and LI Yubo. New Constructions of perfect Gaussian integer sequences[J]. Journal of Electronics &Information Technology, 2014, 36(9): 2081–2085. doi: 10.3724/SP.J.1146.2013.01697
    LI Yubo, TIAN Liying, and LIU Tao. Nearly perfect Gaussian integer sequences with arbitrary degree[J]. IET Communications, 2018, 12(9): 1123–1127. doi: 10.1049/iet-com.2017.1274
    LI Chihpeng, CHANG Kuojen, CHANG Hohsuan, et al. Perfect sequences of odd prime length[J]. IEEE Signal Processing Letters, 2018, 25(7): 966–969. doi: 10.1109/LSP.2018.2832719
    柯品惠, 胡电芬, 常祖领. 周期为p2的完备高斯整数序列的新构造[J]. 工程数学学报, 2018, 35(3): 319–328. doi: 10.3969/j.issn.1005-3085.2018.03.007

    KE Pinhui, HU Dianfen, and CHANG Zuling. New construction of perfect Gaussian integer sequence with period p2[J]. Chinese Journal of Engineering Mathematics, 2018, 35(3): 319–328. doi: 10.3969/j.issn.1005-3085.2018.03.007
    刘凯, 姜昆. 交织法构造高斯整数零相关区序列集[J]. 电子与信息学报, 2017, 39(2): 328–334. doi: 10.11999/JEIT160276

    LIU Kai and JIANG Kun. Construction of Gaussian integer sequence sets with zero correlation zone based on interleaving technique[J]. Journal of Electronics &Information Technology, 2017, 39(2): 328–334. doi: 10.11999/JEIT160276
    刘凯, 陈盼盼. 最佳及几乎最佳高斯整数ZCZ序列集的构造[J]. 电子学报, 2018, 46(3): 755–760. doi: 10.3969/j.issn.0372-2112.2018.03.034

    LIU Kai and CHEN Panpan. Constructions of optimal of almost optimal Gaussian integer ZCZ sequence sets[J]. Acta Electronica Sinica, 2018, 46(3): 755–760. doi: 10.3969/j.issn.0372-2112.2018.03.034
    BOMER Leopold and ANTWEILER Markus. Periodic complementary binary sequences[J]. IEEE Transactions on Information Theory, 1990, 36(6): 1487–1494. doi: 10.1109/18.59954
    TSENG Chin-Chong. Complementary sets of sequences[J]. IEEE Transactions on Information Theory, 1972, 18(5): 644–652. doi: 10.1109/TIT.1972.1054860
    LI Xudong, LIU Zilong, GUAN Yongliang, et al. Two valued periodic complementary sequences[J]. IEEE Signal Processing Letters, 2017, 24(9): 1270–1274. doi: 10.1109/LSP.2017.2722423
    DING Cunsheng. Two Constructions of (v, (v-1)/2, (v-3)/2) difference families[J]. Journal of Combinatorial Designs, 2008, 16: 164–171. doi: 10.1002/jcd.20159
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(1)

    Article Metrics

    Article views (1696) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return