Advanced Search
Volume 41 Issue 6
Jun.  2019
Turn off MathJax
Article Contents
Renbiao WU, Ting ZHAO, Jingyi QU. Flight Delay Prediction Model Based on Deep SE-DenseNet[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1510-1517. doi: 10.11999/JEIT180644
Citation: Renbiao WU, Ting ZHAO, Jingyi QU. Flight Delay Prediction Model Based on Deep SE-DenseNet[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1510-1517. doi: 10.11999/JEIT180644

Flight Delay Prediction Model Based on Deep SE-DenseNet

doi: 10.11999/JEIT180644
Funds:  The National Natural Science Foundation of China (U1833105), The Tianjin Key Laboratory of Advanced Signal Processing Open Project (2017ASP-TJ01)
  • Received Date: 2018-07-02
  • Rev Recd Date: 2018-11-16
  • Available Online: 2018-12-04
  • Publish Date: 2019-06-01
  • Nowadays, the civil aviation industry has a high-precision prediction demand of flight delays, thus a flight delay prediction model based on the deep SE-DenseNet is proposed. Firstly, flight data, associated airport delay information and meteorological data are fused in the model. Then, the improved SE-DenseNet algorithm is used to extract feature automatically based on the fused flight data set. Finally, the softmax classifier is used to predict the delay level of flight. The proposed SE-DenseNet, combing the advantages of DenseNet and SENet, can not only enhance the transmission of deep information, avoid the problem of vanishing gradients, but also achieve feature recalibration by the feature extraction process. The results indicate that after data fusion, the accuracy of the model is improved 1.8% than only considering the characteristics of the flight itself. The improved algorithm can effectively improve the network performance. The final accuracy of the model reaches 93.19%.
  • loading
  • BASPINAR B, URE N K, KOYUNCU E, et al. Analysis of delay characteristics of European air traffic through a data-driven airport-centric queuing network model[J]. IFAC-PapersOnLine, 2016, 49(3): 359–364. doi: 10.1016/j.ifacol.2016.07.060
    KHANMOHAMMAD S, TUTUN S, and KUCUK Y. A new multilevel input layer artificial neural network for predicting flight delays at JFK airport[C]. Complex Adaptive Systems, Los Angeles, USA, 2016: 237–244.
    程华, 李艳梅, 罗谦, 等. 基于C4.5决策树方法的到港航班延误预测问题研究[J]. 系统工程理论与实践, 2014, 34(S1): 239–247. doi: 10.12011/1000-6788(2014)s1-239

    CHENG Hua, LI Yanmei, LUO Qian, et al. Study on flight delay with C4.5 decision tree based prediction method[J]. System Engineering – Theory &Practice, 2014, 34(S1): 239–247. doi: 10.12011/1000-6788(2014)s1-239
    徐涛, 丁建立, 顾彬, 等. 基于增量式排列支持向量机的机场航班延误预警[J]. 航空学报, 2009, 30(7): 1256–1263. doi: 10.3321/j.issn:1000-6893.2009.07.014

    XU Tao, DING Jianli, GU Bin, et al. Forecast warning level of flight delays based on incremental ranking support vector machine[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(7): 1256–1263. doi: 10.3321/j.issn:1000-6893.2009.07.014
    MANNA S, BISWAS S, KUNDU R, et al. A statistical approach to predict flight delay using gradient boosted decision tree[C]. 2017 International Conference on Computational Intelligence in Data Science, Chennai, India, 2017: 1–5.
    KIM Y J, CHOI S, BRICENO S, et al. A deep learning approach to flight delay prediction[C]. 35th Digital Avionics Systems Conference, Sacramento, USA, 2016: 1–6.
    LECUN Y, BENGIO Y, and HINTON G E. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
    HUANG Gao, LIU Zhuang, and WEINBERGER K Q. Densely connected convolutional networks[C]. 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, USA, 2017: 2261–2269.
    HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[OL]. https://arxiv.org/pdf/1709.01507.pdf, 2018.4.
    IOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. 32nd International Conference on Machine Learning, Lile, France, 2015: 448–456.
    NAIR V and HINTON G E. Rectified linear units improve restricted boltzmann machines[C]. 27th International Conference on Machine Learning, Haifa, Israel, 2010: 807–814.
    RUMELHART D E, HINTON G E, and WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(9): 533–536. doi: 10.1038/323533a0
    DUAN Kaibo, KEERTHI S S, CHU Wei, et al. Multi-category classification by soft-max combination of binary classifiers[C]. 4th International Workshop on Multiple Classifier Systems, Guildford, United Kingdom, 2003: 125–134.
    SHEN Li, LIN Zhouchen, and HUANG Qingming. Relay backpropagation for effective learning of deep convolutional neural networks[C]. European Conference on Computer Vision, Amsterdam, The Netherlands, 2016, 467–482. doi: https://doi.org/10.1007/978-3-319-46478-7_29.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[C]. 15th IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1026–1034.
    吴仁彪, 李佳怡, 屈景怡. 基于双通道卷积神经网络的航班延误预测模型[J]. 计算机应用, 2018, 38(7): 2100–2106. doi: 10.11772/j.issn.1001-9081.2018010037

    WU Renbiao, LI Jiayi, and QU Jingyi. Flight delay prediction based on dual-channel convolutional neural networks[J]. Journal of Computer Applications, 2018, 38(7): 2100–2106. doi: 10.11772/j.issn.1001-9081.2018010037
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(8)

    Article Metrics

    Article views (4618) PDF downloads(187) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return