Advanced Search
Volume 41 Issue 4
Mar.  2019
Turn off MathJax
Article Contents
Bingji ZHAO, Qingjun ZHANG, Chao DAI, Liping LIU, Zhihua TANG, Weiping SHU, Chong NI. A New Prompt 2-D Attitude Steering Approach for Zero Doppler Centroid of GEOsynchronous SAR[J]. Journal of Electronics & Information Technology, 2019, 41(4): 763-769. doi: 10.11999/JEIT180643
Citation: Bingji ZHAO, Qingjun ZHANG, Chao DAI, Liping LIU, Zhihua TANG, Weiping SHU, Chong NI. A New Prompt 2-D Attitude Steering Approach for Zero Doppler Centroid of GEOsynchronous SAR[J]. Journal of Electronics & Information Technology, 2019, 41(4): 763-769. doi: 10.11999/JEIT180643

A New Prompt 2-D Attitude Steering Approach for Zero Doppler Centroid of GEOsynchronous SAR

doi: 10.11999/JEIT180643
Funds:  The National Natural Science Foundation of China(61601022), Outstanding Young Personnel Fund of the Fifth Academy of Aerospace
  • Received Date: 2018-07-02
  • Rev Recd Date: 2018-12-17
  • Available Online: 2018-12-29
  • Publish Date: 2019-04-01
  • A new prompt 2-D attitude steering approach for zero Doppler centroid of GEOsynchronous SAR (GEOSAR) is proposed. Large yaw angle of GEOSAR in traditional 2-D yaw steering condition can be solved by this method. It is suited to the large satellite such as GEOSAR. The GEOSAR can achieve broadside imaging when this method is applied. Compared to the traditional attitude steering approach, the steering angle and time are just 1/10 of it, and the developing difficulty of GEOSAR becomes lower through this new method. This approach is propitious to GEOSAR. When it is employed to SAR satellites with different altitudes, the residual Doppler centroid is accurate zero in all the conditions. Besides, an attitude selection reference standard is illustrated for different altitude orbital satellites.

  • loading
  • 张薇, 杨思全, 范一大, 等. 高轨SAR卫星在综合减灾中的应用潜力和工作模式需求[J]. 航天器工程, 2017, 26(1): 127–131 doi: 10.3969/j.issn.1673–8748.2017.01.018

    ZHANG Wei, YANG Siquan, FAN Yida, et al. Application potential and working mode requirements of GEO SAR satellite for comprehensive disaster reduction[J]. Spacecraft Engineering, 2017, 26(1): 127–131 doi: 10.3969/j.issn.1673–8748.2017.01.018
    WEI Guo, JIE Chen, WEI Liu, et al. Time-variant TEC estimation with fully polarimetric GEO-SAR data[J]. Electronics Letters, 2017, 53(24): 1606–1608 doi: 10.1049/el.2017.3297
    梁建, 张润宁. GEO-LEO双站视频SAR系统若干问题研究[J]. 现代雷达, 2017, 39(3): 17–20 doi: 10.16592/j.cnki.1004-7859.2017.03.004

    LIANG JIan, and ZHANG Run Ning. A Study on key technologies of spaceborne video SAR system based on GEO-LEO bistatic model[J]. Modern Radar, 2017, 39(3): 17–20 doi: 10.16592/j.cnki.1004-7859.2017.03.004
    Li Dexin, MARC R C, PAU P I, et al. Reverse back projection algorithm for the accurate generation of SAR raw data of natural scenes[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(11): 2072–2076 doi: 10.1109/LGRS.2017.2751460
    CHEN Jianlai, SUN Guangcai, MENG Daoxing, et al. A parameter optimization model for geosynchronous SAR sensor in aspects of signal bandwidth and integration time[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(9): 1374–1378 doi: 10.1109/LGRS.2016.2587318
    ZHENG Lifang, ZHANG Shunsheng, and ZHANG Xiangqian. A novel strategy of 3D imaging on GEO SAR based on multi-baseline syetem[C]. IGARSS, Texas, USA, 2017: 1724–1727.
    TOMIYASU K. Synthetic aperture radar in geosynchronous orbit[C]. IEEE Antennas and Propagation Symposium, Maryland, USA, 1978(2): 42–45.
    HU Cheng, LI Yuanhao, DONG Xichao, et al. Accurate three dimensional deformation retrieval in geosynchronous SAR by multi-aperture interferometry processing[C]. Progress In Electromagnetic Research Symposium, Shanghai, China, 2016: 5125–5130.
    王跃锟, 李真芳, 张金强, 等. GEO-LEO双站SAR地面分辨特性及轨道构型分析[J]. 系统工程与电子技术, 2017, 39(5): 996–1001 doi: 10.3969/j.issn.1001-506X.2017.05.07

    WANG Yuekun, LI Zhenfang ZHANG Jinqiang, et al. Ground resolution characteristic and orbital configuration analysis for GEO-LEO BiSAR[J]. Systems Engineering and Electronics, 2017, 39(5): 996–1001 doi: 10.3969/j.issn.1001-506X.2017.05.07
    JORDAN R and RODGERS D. The SEASAT-A synthetic aperture radar system[J]. IEEE Jounal of Oceanic Engineering, 1980, 5(2): 154–164 doi: 10.2514/6.1976-966
    TOMIYASU K and PACELL J L. Synthetic aperture radar imaging from an inclined geosynchronous orbit[J]. IEEE Transaction on Geoscience and Remote Sensing, 1983, 21(3): 324–328 doi: 10.1109/TGRS.1983.350561
    RANEY R K. Doppler properties of radars in circular orbits[J]. International Journal of Remote Sensing, 1986, 7(9): 1153–1162 doi: 10.1080/01431168608948916
    FIERDLER H, BOENER E, MITTERMAYER J, et al. Total zero doppler steering: a new method for minimizing the doppler centroid[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2): 141–145 doi: 10.1109/LGRS.2005.844591
    YU Ze, ZHOU Yin, CHEN Jie, et al. A new satellite attitude steering approach for zero Doppler centroid[C]. IET International Radar Conference, Guilin China, 2009: 1–4.
    ZHANG Jiabiao, Yu ZE, and PENG Xiao. A novel antenna beam steering strategy for GEO SAR staring observation[C]. IGARSS, Beijing, China, 2016: 1106–1109.
    TENG Long, XI Chaodong, CHENG Hu, et al. A new method of zero-doppler centroid control in GeoSAR[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 512–516 doi: 10.1109/LGRS.2010.2089969
    陈溅来, 杨军, 孙光才, 等. 高轨SAR多普勒中心补偿的二维姿态控制方法[J]. 电子与信息学报, 2014, 36(8): 1972–1977 doi: 10.3724/SP.J.1146.2013.01573

    CHEN Jianlai, YANG Jun, SUN Guangcai, et al. A two-dimensional attitude steering method to compensate doppler centroid in GEO SAR[J]. Journal of Electronics &Information Technology, 2014, 36(8): 1972–1977 doi: 10.3724/SP.J.1146.2013.01573
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (2545) PDF downloads(135) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return