Advanced Search
Volume 41 Issue 6
Jun.  2019
Turn off MathJax
Article Contents
Zengshan TIAN, Yang WANG, Mu ZHOU, Ping WEI. Adaptive Fading Memory Based Bluetooth Sequence Matching Localization Algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1381-1388. doi: 10.11999/JEIT180637
Citation: Zengshan TIAN, Yang WANG, Mu ZHOU, Ping WEI. Adaptive Fading Memory Based Bluetooth Sequence Matching Localization Algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1381-1388. doi: 10.11999/JEIT180637

Adaptive Fading Memory Based Bluetooth Sequence Matching Localization Algorithm

doi: 10.11999/JEIT180637
Funds:  The National Natural Science Foundation of China (61771083, 61704015), The Program for Changjiang Scholars and Innovative Research Team in University (IRT1299), The Special Fund of Chongqing Key Laboratory of CSTC, Fundamental and Frontier Research Project of Chongqing (cstc2017jcyjAX0380, cstc2015jcyjBX0065), The University Outstanding Achievement Transformation Project of Chongqing (KJZH17117), The Postgraduate Scientific Research and Innovation Project of Chongqing (CYS17221), The Scientific and Technological Research Foundation of Chongqing Municipal Education Commission (KJ1704083)
  • Received Date: 2018-07-02
  • Rev Recd Date: 2019-01-12
  • Available Online: 2019-01-25
  • Publish Date: 2019-06-01
  • The traditional fingerprinting localization algorithm has high construct time overhead and low positioning accuracy. Because of this problem, an adaptive fading memory based bluetooth sequence matching localization algorithm is proposed. Firsly, Pedestrian Dead Reckoning(PDR) and Nearest Neighbor Algorithm(NNA) are applied to performing position calibration and Received Signal Strength(RSS) mapping of Motion Sequences. Secoudly, according to the relevance of neighboring locations, a sequence recursive search method is used to construct fingerprint sequence database. Finally, an adaptive fading memory algorithm and initial sequence matching degree are considered to realize the position estimation of target. The experimental results show that this algorithm is able to consume low construct time overhead and achieve high indoor localization precision.
  • loading
  • VU T H N, RYU K H, and PARK N. A method for predicting future location of mobile user for location-based services system[J]. Computers & Industrial Engineering, 2009, 57(1): 91–105. doi: 10.1016/j.cie.2008.07.009
    GEZICI S, TIAN Zhi, GIANNAKIS G B, et al. Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks[J]. IEEE Signal Processing Magazine, 2005, 22(4): 70–84. doi: 10.1109/MSP.2005.1458289
    WANG Yixin, YE Qiang, CHENG Jie, et al. RSSI-based Bluetooth indoor localization[C]. Proceedings of the 2015 11th International Conference on Mobile Ad-Hoc and Sensor Networks, Shenzhen, China, 2015: 165–171. doi: 10.1109/MSN.2015.14.
    WILLEMSEN T, KELLER F, and STERNBERG H. Concept for building a MEMS based indoor localization system[C]. Proceedings of 2014 International Conference on Indoor Positioning and Indoor Navigation, Busan, South Korea, 2014: 1–10. doi: 10.1109/IPIN.2014.7275461.
    YANG Bo, LEI Yiqun, and YAN Bei. Distributed multi-human location algorithm using naive Bayes classifier for a binary pyroelectric infrared sensor tracking system[J]. IEEE Sensors Journal, 2016, 16(1): 216–223. doi: 10.1109/JSEN.2015.2477540
    KUNG H Y, CHAISIT S, and PHUONG N T M. Optimization of an RFID location identification scheme based on the neural network[J]. International Journal of Communication Systems, 2015, 28(4): 625–644. doi: 10.1002/dac.2692
    JEON W S and JEONG D G. Enhanced channel access for connection state of Bluetooth low energy networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66(9): 8469–8481. doi: 10.1109/TVT.2017.2675915
    周牧, 王斌, 田增山, 等. 室内BLE/MEMS跨楼层融合定位算法[J]. 通信学报, 2017, 38(5): 2017076. doi: 10.11959/j.issn.1000-436x.2017076

    ZHOU Mu, WANG Bin, TIAN Zengshan, et al. Indoor BLE and MEMS based multi-floor fusion positioning algorithm[J]. Journal on Communications, 2017, 38(5): 2017076. doi: 10.11959/j.issn.1000-436x.2017076
    LIN C P, TANG S H, LIN C H, et al. An improved modeling of TDR signal propagation for measuring complex dielectric permittivity[J]. Journal of Earth Science, 2015, 26(6): 827–834. doi: 10.1007/s12583-015-0599-7
    王艳丽, 杨如民, 余成波, 等. 相关性匹配蓝牙信标位置指纹库的室内定位[J]. 电讯技术, 2017, 57(2): 145–150. doi: 10.3969/j.issn.1001-893x.2017.02.004

    WANG Yanli, YANG Rumin, YU Chengbo, et al. Indoor localization of Bluetooth beacon position fingerprint based on correlation Algorithm[J]. Telecommunication Engineering, 2017, 57(2): 145–150. doi: 10.3969/j.issn.1001-893x.2017.02.004
    XU Xiaolong, TANG Yu, WANG Xinheng, et al. Variance-based fingerprint distance adjustment algorithm for indoor localization[J]. Journal of Systems Engineering and Electronics, 2015, 26(6): 1191–1201. doi: 10.1109/JSEE.2015.00130
    CHEN Kongyang, WANG Chen, YIN Zhimeng, et al. Slide: towards fast and accurate mobile fingerprinting for Wi-Fi indoor positioning systems[J]. IEEE Sensors Journal, 2018, 18(3): 1213–1223. doi: 10.1109/JSEN.2017.2778082
    JUN J, HE Liang, GU Yu, et al. Low-overhead WiFi fingerprinting[J]. IEEE Transactions on Mobile Computing, 2018, 17(3): 590–603. doi: 10.1109/TMC.2017.2737426
    AN J H and CHOI L. Inverse fingerprinting: Server side indoor localization with Bluetooth low energy[C]. Proceedings of the 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, Valencia, Spain, 2016: 1–6. doi: 10.1109/PIMRC.2016.7794891.
    WU Xudong, SHEN Ruofei, FU Luoyi, et al. iBILL: Using iBeacon and inertial sensors for accurate indoor localization in large open areas[J]. IEEE Access, 2017, 5: 14589–14599. doi: 10.1109/ACCESS.2017.2726088
    庞业勇, 王少军, 彭宇, 等. 一种在线时间序列预测的核自适应滤波器向量处理器[J]. 电子与信息学报, 2016, 38(1): 53–62. doi: 10.11999/JEIT150157

    PANG Yeyong, WANG Shaojun, PENG Yu, et al. A kernel adaptive filter vector processor for online time series prediction[J]. Journal of Electronics &Information Technology, 2016, 38(1): 53–62. doi: 10.11999/JEIT150157
    冯少江, 徐泽宇, 石明全, 等. 基于改进扩展卡尔曼滤波的姿态解算算法研究[J]. 计算机科学, 2017, 44(9): 227–229, 249. doi: 10.11896/j.issn.1002-137X.2017.09.042

    FENG Shaojiang, XU Zeyu, SHI Mingquan, et al. Research on attitude algorithm based on improved extended caiman filter[J]. Computer Science, 2017, 44(9): 227–229, 249. doi: 10.11896/j.issn.1002-137X.2017.09.042
    谷阳, 宋千, 李杨寰, 等. 基于惯性鞋载传感器的人员自主定位粒子滤波方法[J]. 电子与信息学报, 2015, 37(2): 484–488. doi: 10.11999/JEIT140362

    GU Yang, SONG Qian, LI Yanghuan, et al. A particle filter method for pedestrian navigation using foot-mounted inertial sensors[J]. Journal of Electronics &Information Technology, 2015, 37(2): 484–488. doi: 10.11999/JEIT140362
    PEVNY T, BAS P, and FRIDRICH J. Steganalysis by subtractive pixel adjacency matrix[J]. IEEE Transactions on Information Forensics and Security, 2010, 5(2): 215–224. doi: 10.1109/TIFS.2010.2045842
    JINDALERTUDOMDEE J, HAYASHIDA M, ZHAO Yang, et al. Enumeration method for tree-like chemical compounds with benzene rings and naphthalene rings by breadth-first search order[J]. BMC Bioinformatics, 2016, 17: 113. doi: 10.1186/s12859-016-0962-4
    XIAO Ying and YIN Fuliang. Blind equalization based on RLS algorithm using adaptive forgetting factor for underwater acoustic channel[J]. China Ocean Engineering, 2014, 28(3): 401–408. doi: 10.1007/s13344-014-0032-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (1901) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return