Advanced Search
Volume 41 Issue 6
Jun.  2019
Turn off MathJax
Article Contents
Shuqin DONG, Bin ZHANG. A Probabilistic Flow Sampling Method for Traffic Anomaly Detection[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1450-1457. doi: 10.11999/JEIT180631
Citation: Shuqin DONG, Bin ZHANG. A Probabilistic Flow Sampling Method for Traffic Anomaly Detection[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1450-1457. doi: 10.11999/JEIT180631

A Probabilistic Flow Sampling Method for Traffic Anomaly Detection

doi: 10.11999/JEIT180631
Funds:  The Foundation and Frontier Technology Research Project of Henan Province (142300413201), The New Research Direction Cultivation Fund of Information Engineering University (2016604703)
  • Received Date: 2018-06-28
  • Rev Recd Date: 2019-01-15
  • Available Online: 2019-01-28
  • Publish Date: 2019-06-01
  • For problems of not meeting the demand of sampling both large flows and small flows at the same time, and not distinguishing flash crowd from traffic attacks in building network traffic anomaly detection datasets based on probabilistic sampling methods, a probabilistic flow sampling method for traffic anomaly detection is proposed. On the basis of the classification of network data flows according to their destination and source IP addresses, the sampling probability for each class of data flows is set as the maximum of its destination and source IP address’s sampling probability, and the number of sampled data flows is ceiled to ensure that each class of data flows is sampled at least once, so that the sampled dataset can reflect the distributions of large, small flows and source, destination IP addresses in original traffics. Then, the source IP address entropy is used to characterize the source IP dispersion of anomaly flows, and the attack flow sampling algorithm is designed based on the threshold of the source IP address entropy, which reduces the sampling probability of non-attack anomaly flows caused by flash crowd. The simulation results show that the proposed method can satisfy the sampling requirements of both large flows and small flows, it has a high anomaly flows sampling ability, can sample all the suspicious sources and destination IP addresses related to anomaly flows, and can effectively filter the non-attack anomaly flows.
  • loading
  • YANG Chen. Anomaly network traffic detection algorithm based on information entropy measurement under the cloud computing environment[J/OL]. https://doi.org/10.1007/s10586-018-1755-5, 2018.
    KWON D, KIM H, KIM J, et al. A survey of deep learning-based network anomaly detection[J/OL]. https://doi.org/10.1007/s10586-017-1117-8, 2017.
    周爱平, 程光, 郭晓军. 高速网络流量测量方法[J]. 软件学报, 2014, 25(1): 135–153. doi: 10.13328/j.cnki.jos.004445

    ZHOU Aiping, CHENG Guang, and GUO Xiaojun. High-speed network traffic measurement method[J]. Journal of Software, 2014, 25(1): 135–153. doi: 10.13328/j.cnki.jos.004445
    ANDROULIDAKIS G, CHATZIGIANNAKIS V, and PAPAVASSILIOU S. Network anomaly detection and classification via opportunistic sampling[J]. IEEE Network, 2009, 23(1): 6–12. doi: 10.1109/MNET.2009.4804318
    ESTAN C and VARGHESE G. New directions in traffic measurement and accounting: Focusing on the elephants, ignoring the mice[J]. ACM Transactions on Computer Systems, 2003, 21(3): 270–313. doi: 10.1145/859716.859719
    ANDROULIDAKIS G and PAPAVASSILIOU S. Improving network anomaly detection via selective flow-based sampling[J]. IET Communications, 2008, 2(3): 399–409. doi: 10.1049/iet-com:20070231
    JADIDI Z, MUTHUKKUMARASAMY V, SITHIRASENAN E, et al. Intelligent sampling using an optimized neural network[J]. Journal of Networks, 2016, 11(1): 16–27.
    伊鹏, 钱坤, 黄万伟, 等. 基于抽样流长与完全抽样阈值的异常流自适应抽样算法[J]. 电子与信息学报, 2015, 37(7): 1606–1611. doi: 10.11999/JEIT141379

    YI Peng, QIAN Kun, HUANG Wanwei, et al. Adaptive flow sampling algorithm based on sampled packets and force sampling threshold S towards anomaly detection[J]. Journal of Electronics &Information Technology, 2015, 37(7): 1606–1611. doi: 10.11999/JEIT141379
    JADIDI Z, MUTHUKKUMARASAMY V, SITHIRASENAN E, et al. A probabilistic sampling method for efficient flow-based analysis[J]. Journal of Communications and Networks, 2016, 18(5): 818–825. doi: 10.1109/JCN.2016.000110
    BEHAL S, KUMAR K, and SACHDEVA M. Discriminating flash events from DDoS attacks: A comprehensive review[J]. International Journal of Network Security, 2017, 19(5): 734–741. doi: 10.6633/IJNS.201709.19(5).11
    BEHAL S and KUMAR K. Detection of DDoS attacks and flash events using novel information theory metrics[J]. Computer Networks, 2017, 116: 96–110. doi: 10.1016/j.comnet.2017.02.015
    张斌, 刘自豪, 董书琴, 等. 基于偏二叉树SVM多分类算法的应用层DDoS检测方法[J]. 网络与信息安全学报, 2018, 4(3): 24–34. doi: 10.11959/j.issn.2096-109x.2018020

    ZHANG Bin, LIU Zihao, DONG Shuqin, et al. App-DDoS detection method using partial binary tree based SVM algorithm[J]. Chinese Journal of Network and Information Security, 2018, 4(3): 24–34. doi: 10.11959/j.issn.2096-109x.2018020
    CAIDA. The CAIDA UCSD anonymized internet traces 2013[EB/OL]. http://www.caida.org/data/passive/passive_2013_dataset.xml, 2018.
    CAIDA. The CAIDA UCSD anonymized internet traces 2018[EB/OL]. http://www.caida.org/data/passive/passive_2018_dataset.xml, 2018.
    MIT Lincoln Lab. 1999 DARPA intrusion detection evaluation dataset[EB/OL]. https://www.ll.mit.edu/r-d/datasets, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views (2350) PDF downloads(89) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return