| Citation: | Shuqin DONG, Bin ZHANG. A Probabilistic Flow Sampling Method for Traffic Anomaly Detection[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1450-1457. doi: 10.11999/JEIT180631 | 
 
	                | YANG Chen. Anomaly network traffic detection algorithm based on information entropy measurement under the cloud computing environment[J/OL]. https://doi.org/10.1007/s10586-018-1755-5, 2018. | 
| KWON D, KIM H, KIM J, et al. A survey of deep learning-based network anomaly detection[J/OL]. https://doi.org/10.1007/s10586-017-1117-8, 2017. | 
| 周爱平, 程光, 郭晓军. 高速网络流量测量方法[J]. 软件学报, 2014, 25(1): 135–153. doi:  10.13328/j.cnki.jos.004445 ZHOU Aiping, CHENG Guang, and GUO Xiaojun. High-speed network traffic measurement method[J]. Journal of Software, 2014, 25(1): 135–153. doi:  10.13328/j.cnki.jos.004445 | 
| ANDROULIDAKIS G, CHATZIGIANNAKIS V, and PAPAVASSILIOU S. Network anomaly detection and classification via opportunistic sampling[J]. IEEE Network, 2009, 23(1): 6–12. doi:  10.1109/MNET.2009.4804318 | 
| ESTAN C and VARGHESE G. New directions in traffic measurement and accounting: Focusing on the elephants, ignoring the mice[J]. ACM Transactions on Computer Systems, 2003, 21(3): 270–313. doi:  10.1145/859716.859719 | 
| ANDROULIDAKIS G and PAPAVASSILIOU S. Improving network anomaly detection via selective flow-based sampling[J]. IET Communications, 2008, 2(3): 399–409. doi:  10.1049/iet-com:20070231 | 
| JADIDI Z, MUTHUKKUMARASAMY V, SITHIRASENAN E, et al. Intelligent sampling using an optimized neural network[J]. Journal of Networks, 2016, 11(1): 16–27. | 
| 伊鹏, 钱坤, 黄万伟, 等. 基于抽样流长与完全抽样阈值的异常流自适应抽样算法[J]. 电子与信息学报, 2015, 37(7): 1606–1611. doi:  10.11999/JEIT141379 YI Peng, QIAN Kun, HUANG Wanwei, et al. Adaptive flow sampling algorithm based on sampled packets and force sampling threshold S towards anomaly detection[J]. Journal of Electronics &Information Technology, 2015, 37(7): 1606–1611. doi:  10.11999/JEIT141379 | 
| JADIDI Z, MUTHUKKUMARASAMY V, SITHIRASENAN E, et al. A probabilistic sampling method for efficient flow-based analysis[J]. Journal of Communications and Networks, 2016, 18(5): 818–825. doi:  10.1109/JCN.2016.000110 | 
| BEHAL S, KUMAR K, and SACHDEVA M. Discriminating flash events from DDoS attacks: A comprehensive review[J]. International Journal of Network Security, 2017, 19(5): 734–741. doi:  10.6633/IJNS.201709.19(5).11 | 
| BEHAL S and KUMAR K. Detection of DDoS attacks and flash events using novel information theory metrics[J]. Computer Networks, 2017, 116: 96–110. doi:  10.1016/j.comnet.2017.02.015 | 
| 张斌, 刘自豪, 董书琴, 等. 基于偏二叉树SVM多分类算法的应用层DDoS检测方法[J]. 网络与信息安全学报, 2018, 4(3): 24–34. doi:  10.11959/j.issn.2096-109x.2018020 ZHANG Bin, LIU Zihao, DONG Shuqin, et al. App-DDoS detection method using partial binary tree based SVM algorithm[J]. Chinese Journal of Network and Information Security, 2018, 4(3): 24–34. doi:  10.11959/j.issn.2096-109x.2018020 | 
| CAIDA. The CAIDA UCSD anonymized internet traces 2013[EB/OL]. http://www.caida.org/data/passive/passive_2013_dataset.xml, 2018. | 
| CAIDA. The CAIDA UCSD anonymized internet traces 2018[EB/OL]. http://www.caida.org/data/passive/passive_2018_dataset.xml, 2018. | 
| MIT Lincoln Lab. 1999 DARPA intrusion detection evaluation dataset[EB/OL]. https://www.ll.mit.edu/r-d/datasets, 2017. | 
