Citation: | Zhongtao LUO, Peng LU, Yangyong ZHANG, Gang ZHANG. Adaptive Design of Limiters for Impulsive Noise Suppression[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1160-1166. doi: 10.11999/JEIT180609 |
An adaptive method of limiter design is proposed to suppress impulsive noise. With a purpose of maximizing the efficacy function, the proposed method searches for optimal thresholds of clipper and blanker, via adaptive line search. Firstly, based on analysis on the relationship between the efficacy and the nonlinearity, the key problem of optimization is proposed. Then, since the calculation of efficacy is hard, an adaptive algorithm based on linear search approach is developed based on linear search to optimize the efficacy. Considering the noise distribution is unknown, the proposed method employs the nonparametric kernel density estimation and works robustly in the presence of estimation error. Finally, numeric simulations demonstrate that the proposed method can obtain the optimal performance of clippers and blankers successfully. In the processing of real atmospheric noise from unknown distribution, the proposed method achieves the best detection performance when combining nonparametric kernel density estimation approach.
KAY S M. Fundamentals of Statistical Signal Processing, Volume II: Detection Theory[M]. Englewood Cliffs, USA: Prentice-Hall, Inc., 1993: 94–115.
|
DAVIS R R and CLAVIER O. Impulsive noise: A brief review[J]. Elsevier Hearing Research, 2017, 349: 34–36. doi: 10.1016/j.heares.2016.10.020
|
LI Xutao, SUN Jun, WANG Shouyong, et al. Near-optimal detection with constant false alarm ratio in varying impulsive interference[J]. IET Signal Processing, 2013, 7(9): 824–832. doi: 10.1049/iet-spr.2013.0024
|
MILLER J and THOMAS J. Detectors for discrete-time signals in non-Gaussian noise[J]. IEEE Transactions on Information Theory, 1972, 18(2): 241–250. doi: 10.1109/TIT.1972.1054787
|
VADALI S R K, RAY P, MULA S, et al. Linear detection of a weak signal in additive Cauchy noise[J]. IEEE Transactions on Communications, 2017, 65(3): 1061–1076. doi: 10.1109/TCOMM.2016.2647599
|
WANG Pingbo, LIU Feng, CAI Zhiming, et al. G-Filter's Gaussianization function for interference background[C]. International Conference on Signal Acquisition and Processing, Nanjing, China, 2010: 76–79.
|
罗忠涛, 卢鹏, 张杨勇, 等. 基于高斯化-广义匹配的脉冲型噪声处理方法研究[J]. 电子与信息学报, 2018, 40(12): 2928–2935. doi: 10.11999/JEIT180191
LUO Zhongtao, LU Peng, ZHANG Yangyong, et al. A novel method for nonlinear processing in impulsive noise based on gaussianization and generalized matching[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2928–2935. doi: 10.11999/JEIT180191
|
OH H and NAM H. Design and performance analysis of nonlinearity preprocessors in an impulsive noise environment[J]. IEEE Transactions on Vehicular Technology, 2017, 66(1): 364–376. doi: 10.1109/TVT.2016.2547889
|
OH H, NAM H, and PARK S. Adaptive threshold blanker in an impulsive noise environment[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(5): 1045–1052. doi: 10.1109/TEMC.2014.2311853
|
KOLODZIEJSKI K R and BETZ J W. Detection of weak random signals in IID non-Gaussian noise[J]. IEEE Transactions on Communications, 2000, 48(2): 222–230. doi: 10.1109/26.823555.doi:10.1109/26.823555
|
ZHANG Guoyong, WANG Jun, YANG Guosheng, et al. Nonlinear processing for correlation detection in symmetric alpha-stable noise[J]. IEEE Signal Processing Letters, 2018, 25(1): 120–124. doi: 10.1109/LSP.2017.2776317
|
张杨勇, 刘勇. 低频段大气噪声及处理技术[J]. 舰船科学技术, 2008, 30(S1): 85–88. doi: 10.3404/j.issn.1672-7649.2008.S021
ZHANG Yangyong and LIU Yong. Atmospheric-noise at low frequency and its processing technique[J]. Ship Science &Technology, 2008, 30(S1): 85–88. doi: 10.3404/j.issn.1672-7649.2008.S021
|
MODESTINO J W and NINGO A Y. Detection of weak signals in narrowband non-Gaussian noise[J]. IEEE Transactions on Information Theory, 1979, 25(5): 592–600. doi: 10.1109/TIT.1979.1056086
|
KURUOGLU E E, FITZGERALD W J, and RAYNER P J W. Near optimal detection of signals in impulsive noise modeled with a symmetric alpha-stable distribution[J]. IEEE Communications Letters, 1998, 2(10): 282–284. doi: 10.1109/4234.725224
|
VASTOLA K. Threshold detection in narrow-band non-Gaussian noise[J]. IEEE Transactions on Communications, 1984, 32(2): 134–139. doi: 10.1109/TCOM.1984.1096037
|
CHONG E K D and ZAK S H. An Introduction to Optimization[M]. Hoboken, New Jersey: John Wiley & Sons, 2014: 105–108.
|
NOCEDAL J and WRIGHT S J. Numerical Optimization[M]. New York NY, US: Springer-Verlag Inc., 1999: 35–62.
|
SCALES L E. Introduction to Non-Linear Optimization[M]. London, UK: Macmillan Publishers, 1985: 31–34.
|
SAMIUDDIN M and EL-SAYYAD G M. On nonparametric kernel density estimates[J]. Biometrika, 1990, 77(4): 865–874. doi: 10.1093/77.4.865
|
SILVERMAN B W. Density Estimation for Statistics and Data Analysis[M]. London, UK: Chapman & Hall, 1986: 45–48.
|
HE Jiai, DU Panpan, and CHEN Xing. Parameter estimation of communication signal in alpha-stable distribution noise environment[C]. Computational Intelligence and Security, Hong Kong, China, 2017: 15–18.
|
BIBALAN M H, AMINDAVAR H, and AMIRMAZLAGHANI M. Characteristic function based parameter estimation of skewed alpha-stable distribution: An analytical approach[J]. Elsevier Signal Processing, 2017, 130: 323–336. doi: 10.1016/j.sigpro.2016.07.020
|
MIDDLETON D. Procedures for determining the parameters of the first-order canonical models of Class A and Class B electromagnetic interference[J]. IEEE Transactions on Electromagnetic Compatibility, 2007, 21(3): 190–208. doi: 10.1109/TEMC.1979.303731
|
AXELL E, ELIARDSSON P, TENGSTRAND S, et al. Power control in interference channels with Class A impulse noise[J]. IEEE Wireless Communications Letters, 2017, 6(1): 102–105. doi: 10.1109/LWC.2016.2634529
|