Citation: | Yunlong GAO, Chengyu YANG, Zhihao WANG, Sizhe LUO, Jinyan PAN. Robust Fuzzy C-means Clustering Algorithm Integrating Between-cluster Information[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1114-1121. doi: 10.11999/JEIT180604 |
Comparing with K-means, Fuzzy logic is introduced in Fuzzy C-Means to handle the information between clusters. It can obtain better cluster results. However, fuzzy logic makes observations could belong to more than just one cluster, which results FCM is especially sensitivity to the noisy and outlier and has poor generalization performance. So a Rrobust Fuzzy C-Means clustering integrated Between-cluster Information algorithm (RBI-FCM) is proposed. Taking advantage of the sparsity of K-means, RBI-FCM helps to reduce the interactions among different clusters and improve the separability of sample points which locate in the adjacent domains of different clusters. Beside minimizing the inner-cluster scattering condition, RBI-FCM considers the between-cluster information. The generalization performance of RBI-FCM can be improved. An effective iterative algorithm for solving the model is designed in this paper. The experimental results show that the RBI-FCM improves the robustness of FCM and reduce effectively its sensitivity to size-imbalance and differences on the distribution of clusters of FCM. The great clustering result is obtained.
陈新泉, 周灵晶, 刘耀中. 聚类算法研究综述[J]. 集成技术, 2017, 6(3): 41–49. doi: 10.3969/j.issn.2095-3135.2017.03.004
CHEN Xinquan, ZHOU Lingjing, and LIU Yaozhong. Review on clustering algorithms[J]. Journal of Integrati on Technology, 2017, 6(3): 41–49. doi: 10.3969/j.issn.2095-3135.2017.03.004
|
张传锦, 李璐璐. 基于模糊C均值聚类的无线传感器网络节点定位算法[J]. 电子设计工程, 2016, 24(8): 58–60. doi: 10.14022/j.cnki.dzsjgc.2016.08.017
ZHANG Chuanjin and LI Lulu. Improving multilateration algorithm based on fuzzy C-means cluster in WSN[J]. Electronic Design Engineering, 2016, 24(8): 58–60. doi: 10.14022/j.cnki.dzsjgc.2016.08.017
|
池桂英, 王忠华. 基于分层的直觉模糊C均值聚类图像分割算法[J]. 计算机工程与设计, 2017(12): 3368–3373. doi: 10.16208/j.issn1000-7024.2017.12.031
CHI Guiying and WANG Zhonghua. Intuitionistic fuzzy C-means clustering algorithm based on hierarchy for image segmentation[J]. Computer Engineering and Design, 2017(12): 3368–3373. doi: 10.16208/j.issn1000-7024.2017.12.031
|
黄艳国, 罗云鹏. 基于改进模糊C均值聚类算法的城市道路状态判别方法[J]. 科学技术与工程, 2018, 18(9): 335–342. doi: 10.3969/j.issn.1671-1815.2018.09.052
HUANG Yanguo and LUO Yunpeng. Identification method of urban road condition based on improved fuzzy C-means method clustering algorithm[J]. Science Technology and Engineering, 2018, 18(9): 335–342. doi: 10.3969/j.issn.1671-1815.2018.09.052
|
赵泉华, 刘晓燕, 赵雪梅, 等. 基于可变类FCM算法的多光谱遥感影像分割[J]. 电子与信息学报, 2018, 40(1): 157–165. doi: 10.11999/JEIT170397
ZHAO Quanhua, LIU Xiaoyan, ZHAO Xuemei, et al. Multispectral remote sensing image segmentation based on FCM algorithm with unknown number of clusters[J]. Journal of Electronics &Information Technology, 2018, 40(1): 157–165. doi: 10.11999/JEIT170397
|
XU Rui and WUNSCH D. Survey of clustering algorithms[J]. IEEE Transactions on Neural Networks, 2005, 16(3): 645–678. doi: 10.1109/tnn.2005.845141
|
陈海鹏, 申铉京, 龙建武, 等. 自动确定聚类个数的模糊聚类算法[J]. 电子学报, 2017, 45(3): 687–694. doi: 10.3969/j.issn.0372-2112.2017.03.028
CHEN Haipeng, SHEN Xuanjing, LONG Jianwu, et al. Fuzzy clustering algorithm for automatic identification of clusters[J]. Acta Electronica Sinica, 2017, 45(3): 687–694. doi: 10.3969/j.issn.0372-2112.2017.03.028
|
YANG MiinShen and NATALIANI Y. Robust-learning fuzzy c-means clustering algorithm with unknown number of clusters[J]. Pattern Recognition, 2017, 71: 45–59. doi: 10.1109/nafips.2010.5548175
|
PAL N R, PAL K, KELLER J M, et al. A possibilistic fuzzy C-means clustering algorithm[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(4): 517–530. doi: 10.1109/tfuzz.2004.840099
|
肖满生, 肖哲, 文志诚, 等. 一种空间相关性与隶属度平滑的FCM改进算法[J]. 电子与信息学报, 2017, 39(5): 1123–1129. doi: 10.11999/JEIT160710
XIAO Mansheng, XIAO Zhe, WEN Zhicheng, et al. Improved FCM clustering algorithm based on spatial correlation and membership smoothing[J]. Journal of Electronics &Information Technology, 2017, 39(5): 1123–1129. doi: 10.11999/JEIT160710
|
LIU Yun, HOU Tao, and LIU Fu. Improving fuzzy c-means method for unbalanced dataset[J]. Electronics Letters, 2015, 51(23): 1880–1882. doi: 10.1049/el.2015.1541
|
史慧峰, 马晓宁. 一种自适应的模糊C均值聚类算法[J]. 无线通信技术, 2016, 25(3): 40–45. doi: 10.3969/j.issn.1003-8329.2016.03.009
SHI Huifeng and MA Xiaoning. An adaptive fuzzy C-means clustering algorithm[J]. Wireless Communication Technology, 2016, 25(3): 40–45. doi: 10.3969/j.issn.1003-8329.2016.03.009
|
曲福恒. 模糊聚类算法及应用[M]. 北京: 国防工业出版社, 2011.
QU Fuheng. Fuzzy clustering algorithm and its application[M]. Beijing, National Defense Industry Press, 2011.
|
DUNN J C. A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters[J]. Journal of Cybernetics, 1974, 3(3): 32–57. doi: 10.1080/01969727308546046
|
BEZDEK J C. Pattern Recognition with Fuzzy Objective Function Algorithms[J]. Springer US, 1981. doi: 10.1007/978-1-4757-0450-1
|
ZHU Lin, CHUNG FuLai, and WANG Shitong. Generalized fuzzy C-means clustering algorithm with improved fuzzy partitions[J]. IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics A, 2009, 39(3): 578–591. doi: 10.3724/sp.j.1087.2013.02355
|
HÖPPNER F and KLAWONN F. Improved fuzzy partitions for fuzzy regression models[J]. International Journal of Approximate Reasoning, 2003, 32(2): 85–102. doi: 10.1016/s0888-613x(02)00078-6
|
DENG Zhaohong, CHOI K S, CHUNG Fulai, et al. Enhanced soft subspace clustering integrating within-cluster and between-cluster information[J]. Pattern Recognition, 2010, 43(3): 767–781. doi: 10.1016/j.patcog.2009.09.010
|