Advanced Search
Volume 41 Issue 10
Oct.  2019
Turn off MathJax
Article Contents
Shibao LI, Shengzhi WANG, Jianhang LIU, Tingpei HUANG, Xin ZHANG. Semi-supervised Indoor Fingerprint Database Construction Method Based on the Nonhomogeneous Distribution Characteristic of Received Signal Strength[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2302-2309. doi: 10.11999/JEIT180599
Citation: Shibao LI, Shengzhi WANG, Jianhang LIU, Tingpei HUANG, Xin ZHANG. Semi-supervised Indoor Fingerprint Database Construction Method Based on the Nonhomogeneous Distribution Characteristic of Received Signal Strength[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2302-2309. doi: 10.11999/JEIT180599

Semi-supervised Indoor Fingerprint Database Construction Method Based on the Nonhomogeneous Distribution Characteristic of Received Signal Strength

doi: 10.11999/JEIT180599
Funds:  The National Natural Science Foundation of China (61972417, 61601519, 61872385), The Fundamental Research Funds for the Central Universities (18CX02134A, 18CX02137A, 18CX02133A, 19CX05003A-4)
  • Received Date: 2018-06-20
  • Rev Recd Date: 2019-02-28
  • Available Online: 2019-03-30
  • Publish Date: 2019-10-01
  • The radio map construction is time consuming and labor intensive, and the conventional semi-supervised based methods usually ignore the influence of the uneven distribution of high-dimensional Received Signal Strength (RSS). In order to solve that problem, a semi-supervised radio map construction approach which is based on the nonhomogeneous distribution characteristic of RSS is proposed. The approach utilizes the RSS local scale and common neighbors similarities to calculate the weighted matrix. Thus, the weighted graph that reflects accurately the structure of RSS data manifold is presented. In addition, the weighted graph is used to find the optimal solution of the objective function to calibrate the locations of plenty of unlabeled data by a small number of labeled RSS. The extensive experiments demonstrate that the proposed method is capable of not only constructing an accurate radio map at a low manual cost, but also achieving a high localization accuracy.
  • loading
  • MELAMED R. Indoor localization: Challenges and opportunities[C]. 2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems, Austin, USA, 2016: 1–2.
    徐玉滨, 邓志安, 马琳. 基于核直接判别分析和支持向量回归的WLAN室内定位算法[J]. 电子与信息学报, 2011, 33(4): 896–901. doi: 10.3724/SP.J.1146.2010.00813

    XU Yubin, DENG Zhian, and MA Lin. WLAN indoor positioning algorithm based on KDDA and SVR[J]. Journal of Electronics &Information Technology, 2011, 33(4): 896–901. doi: 10.3724/SP.J.1146.2010.00813
    KHALAJMEHRABADI A, GATSIS N, and AKOPIAN D. Modern WLAN fingerprinting indoor positioning methods and deployment challenges[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1974–2002. doi: 10.1109/COMST.2017.2671454
    JI Yiming, BIAZ S, PANDEY S, et al. ARIADNE: A dynamic indoor signal map construction and localization system[C]. The 4th International Conference on Mobile Systems, Applications and Services, Uppsala, Sweden, 2006: 151–164.
    OUYANG R W, WONG K K S, LEA C T, et al. Indoor location estimation with reduced calibration exploiting unlabeled data via hybrid generative/discriminative learning[J]. IEEE Transactions on Mobile Computing, 2012, 11(11): 1613–1626. doi: 10.1109/TMC.2011.193
    SOROUR S, LOSTANLEN Y, VALAEE S, et al. Joint indoor localization and radio map construction with limited deployment load[J]. IEEE Transactions on Mobile Computing, 2015, 14(5): 1031–1043. doi: 10.1109/TMC.2014.2343636
    ZHOU Mu, TANG Yunxia, TIAN Zengshan, et al. Semi-supervised learning for indoor hybrid fingerprint database calibration with low effort[J]. IEEE Access, 2017, 5: 4388–4400. doi: 10.1109/ACCESS.2017.2678603
    WANG Jin, TAN N, LUO Jun, et al. WOLoc: WiFi-only outdoor localization using crowdsensed hotspot labels[C]. IEEE Conference on Computer Communications, Atlanta, GA, USA, 2017: 1–9.
    CHAPELLE O and ZIEN A. Semi-supervised classification by low density separation[C]. The Tenth International Workshop on Artificial Intelligence and Statistics, Bridgetown, Barbados, 2005: 57–64.
    STEVENS J R, RESMINI R G, and MESSINGER D W. Spectral-density-based graph construction techniques for hyperspectral image analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10): 5966–5983. doi: 10.1109/TGRS.2017.2718547
    ZHU Manli and MARTINEZ A M. Pruning noisy bases in discriminant analysis[J]. IEEE Transactions on Neural Networks, 2008, 19(1): 148–157. doi: 10.1109/TNN.2007.904040
    RODRIGUEZ A and LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492–1496. doi: 10.1126/science.1242072
    LOHAN E S, TORRES-SOSPEDRA J, LEPPÄKOSKI H, et al. Wi-Fi crowdsourced fingerprinting dataset for indoor positioning[J]. Data, 2017, 2(4): 32. doi: 10.3390/data2040032
    TORRES-SOSPEDRA J, MONTOLIU R, MARTíNEZ-USó A, et al. UJIIndoorLoc: A new multi-building and multi-floor database for WLAN fingerprint-based indoor localization problems[C]. 2014 International Conference on Indoor Positioning and Indoor Navigation, Busan, South Korea, 2014: 261–270.
    ZELNIK-MANOR L and PERONA P. Self-tuning spectral clustering[C]. Advances in Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2005: 1601–1608.
    TORRES-SOSPEDRA J, MONTOLIU R, TRILLES S, et al. Comprehensive analysis of distance and similarity measures for Wi-Fi fingerprinting indoor positioning systems[J]. Expert Systems with Applications, 2015, 42(23): 9263–9278. doi: 10.1016/j.eswa.2015.08.013
    BELKIN M and NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6): 1373–1396. doi: 10.1162/089976603321780317
    HAM J, LEE D D and SAUL L K. Semisupervised alignment of manifolds[C]. The Tenth International Workshop on Artificial Intelligence and Statistics, Bridgetown, Barbados, 2005: 120–127.
    BAHL P and PADMANABHAN V N. RADAR: An in-building RF-based user location and tracking system[C]. The Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Tel Aviv, Israel, 2000, 2: 775–784.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (3303) PDF downloads(89) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return