Advanced Search
Volume 41 Issue 5
Apr.  2019
Turn off MathJax
Article Contents
Yu LI, Jie CHEN, Yuanzhi ZHANG. Progress in Research on Marine Oil Spills Detection Using Synthetic Aperture Radar[J]. Journal of Electronics & Information Technology, 2019, 41(3): 751-762. doi: 10.11999/JEIT180468
Citation: Minjuan GAO, Hongshe DANG, Lili WEI, Xuande ZHANG. Image Quality Assessment Algorithm Based on Non-local Gradient[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1122-1129. doi: 10.11999/JEIT180597

Image Quality Assessment Algorithm Based on Non-local Gradient

doi: 10.11999/JEIT180597
Funds:  The National Natural Science Foundation of China (61871260, 61603234, 61362029, 61461043)
  • Received Date: 2018-06-19
  • Rev Recd Date: 2018-12-18
  • Available Online: 2018-12-26
  • Publish Date: 2019-05-01
  • The goal of Image Quality Assessment (IQA) research is to simulate the Human Visual System’s (HVS) perception process of assessing image quality and construct an objective evaluation algorithm that is as consistent as the subjective evaluation result. Many existing algorithms are designed based on local structural similarity, but human subjective perception of images is a high-level, semantic process, and semantic information is essentially non-local, so image quality assessment should take the non-local information of the image into consideration. This paper breaks through the classical framework based on local information, and proposes a framework based on non-local information. Under the proposed framework, an image quality assessment algorithm based on non-local gradient is also presented. This algorithm predicts image quality by measuring the similarity between the non-local gradients of reference image and the distorted image. The experimental results on the public test database TID2008, LIVE, and CSIQ show that the proposed algorithm can obtain better evaluation results.

  • BAE S H and KIM M. A novel image quality assessment with globally and locally consilient visual quality perception[J]. IEEE Transactions on Image Processing, 2016, 25(5): 2392–2406. doi: 10.1109/TIP.2016.2545863
    WANG Hanli, FU Jie, LIN Weisi, et al. Image quality assessment based on local linear information and distortion-specific compensation[J]. IEEE Transactions on Image Processing, 2017, 26(2): 915–926. doi: 10.1109/TIP.2016.2639451
    DI E C and JACOVITTI G. A detail based method for linear full reference image quality prediction[J]. IEEE Transactions on Image Processing, 2017, 27(1): 179–192. doi: 10.1109/TIP.2017.2757139
    CHANDLER D M and HEMAMI S S. VSNR: A wavelet-based visual signal-to-noise ratio for natural images[J]. IEEE Transactions on Image Processing, 2007, 16(9): 2284–2298. doi: 10.1109/TIP.2007.901820
    褚江, 陈强, 杨曦晨. 全参考图像质量评价综述[J]. 计算机应用研究, 2014, 31(1): 13–22. doi: 10.3969/j.issn.1001-3695.2014.01.003

    CHU Jiang, CHEN Qiang, and YANG Xichen. Review on full reference image quality assessment algorithms[J]. Application Research of Computers, 2014, 31(1): 13–22. doi: 10.3969/j.issn.1001-3695.2014.01.003
    WANG Zhou and BOVIK A C. Mean squared error: love it or leave it? A new look at signal fidelity measures[J]. IEEE Signal Processing Magazine, 2009, 26(1): 98–117. doi: 10.1109/MSP.2008.930649
    HUYNH-THU Q and GHANBARI M. Scope of validity of PSNR in image/video quality assessment[J]. Electronics Letters, 2008, 44(13): 800–801. doi: 10.1049/el:20080522
    WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861
    WANG Zhou, SIMONCELLI E P, and BOVIK A C. Multiscale structural similarity for image quality assessment[C]. Proceedings of 37th IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2003: 1398–1402.
    LI Chaofeng and BOVIK A C. Three-component weighted structural similarity index[C]. SPIE Conference on Image Quality and System Performance, San Jose, USA, 2009, 7242: 72420Q–72420Q-9.
    WANG Zhou and LI Qiang. Information content weighting for perceptual image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(5): 1185–1198. doi: 10.1109/TIP.2010.2092435
    ZHANG Lin, ZHANG Lei, MOU Xuanqin, et al. FSIM: A feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378–2386. doi: 10.1109/TIP.2011.2109730
    LIU Anmin, LIN Weisi, and NARWARIA M. Image quality assessment based on gradient similarity[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1500–1512. doi: 10.1109/TIP.2011.2175935
    XUE Wufeng, ZHANG Lei, MOU Xuanqin, et al. Gradient magnitude similarity deviation: A highly efficient perceptual image quality index[J]. IEEE Transactions on Image Processing, 2014, 23(2): 684–695. doi: 10.1109/TIP.2013.2293423
    ZHANG Xuande, FENG Xiangchu, WANG Weiwei, et al. Edge strength similarity for image quality assessment[J]. IEEE Signal Processing Letters, 2013, 20(4): 319–322. doi: 10.1109/LSP.2013.2244081
    WANG Tonghan, JIA Huizhen, and SHU Huazhong. Full-reference image quality assessment algorithm based on gradient magnitude and histogram of oriented gradient[J]. Journal of Southeast University, 2018, 48(2): 276–281. doi: 10.3969/j.issn.1001-0505.2018.02.014
    NI Zhangkai, MA Lin, ZENG Huanqiang, et al. Gradient direction for screen content image quality assessment[J]. IEEE Signal Processing Letters, 2016, 23(10): 1394–1398. doi: 10.1109/LSP.2016.2599294
    DING Li, HUANG Hua, and ZANG Yu. Image quality assessment using directional anisotropy structure measurement[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1799–1809. doi: 10.1109/TIP.2017.2665972
    张帆, 张偌雅, 李珍珍. 基于对称相位一致性的图像质量评价方法[J]. 激光与光电子学进展, 2017, 54(10): 194–202. doi: 10.3788/LOP54.101003

    ZHANG Fan, ZHANG Ruoya, and LI Zhenzhen. Image quality assessment based on symmetry phase congruency[J]. Laser &Optoelectronics Progress, 2017, 54(10): 194–202. doi: 10.3788/LOP54.101003
    PONOMARENKO N, LUKIN V, ZELENSKY A, et al. TID2008: A database for evaluation of full-reference visual quality assessment metrics[OL]. http://www.ponomarenko.info/papers/mre2009tid.pdf. 2016.10.
    LARSON EC and CHANDLER D. Categorical subjective image quality (CSIQ) database[OL]. http://vision.okstate.edu/csiq, 2016.10.
    SHEIKH H R, WANG Zhou, BOVIK A C, et al. Image and video quality assessment research at LIVE[OL]. http://live.ece.utexas.edu/rese-arch/quality/. 2016.10.
  • Cited by

    Periodical cited type(11)

    1. 郭杜,杨鹏举. 基于ResNet-UNet模型的SAR图像海面溢油检测. 计算机测量与控制. 2025(03): 37-44 .
    2. 罗卿莉,陈志远,刘宇婷,张进,李煜. 紧缩极化SAR卷积神经网络溢油检测方法. 测绘通报. 2024(06): 13-18 .
    3. 马靖,过杰. 基于微波散射实验的油种识别研究. 海洋与湖沼. 2023(01): 30-43 .
    4. 栾晓宁,廖玉昆,禚堃,闫道夏,牟冰,秦平,李千,康颖. 面向水面溢油检测的多角度偏振反射特性仿真研究. 光学学报. 2023(06): 239-247 .
    5. 杨鹏举,郭杜. 卷积神经网络在SAR图像海面溢油检测中的应用. 延安大学学报(自然科学版). 2023(01): 20-25 .
    6. 朱磊,李敬曼,潘杨,刘玉春,胡晓. 自适应调节滤波强度的SAR图像非局部平均抑斑算法. 电子与信息学报. 2021(05): 1258-1266 . 本站查看
    7. 杨磊,张苏,黄博,盖明慧,李埔丞. 多任务协同优化学习高分辨SAR稀疏自聚焦成像算法. 电子与信息学报. 2021(09): 2711-2719 . 本站查看
    8. 王欢,张超,郧文聚,吕雅慧,尤淑撑,魏海. 基于多时相GF1-WFV和GF3-FSⅡ极化特征的湿地分类. 农业机械学报. 2020(03): 209-215 .
    9. 任慧敏,宋冬梅,王斌,甄宗晋,刘斌,张婷. 基于新极化特征参数的SAR海洋溢油检测. 遥感技术与应用. 2020(04): 934-942 .
    10. 孟智超,卢景月,张帅钦,张磊,王虹现. 单通道合成孔径雷达抗调频斜率失配干扰新方法. 电子与信息学报. 2020(09): 2246-2252 . 本站查看
    11. 谢谚. 溢油监测技术在石油石化企业环境风险防控中的应用. 化工环保. 2019(06): 608-613 .

    Other cited types(14)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (2143) PDF downloads(111) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return