Advanced Search
Volume 41 Issue 6
Jun.  2019
Turn off MathJax
Article Contents
Zhiping ZHOU, Zhicong LI. Data Anonymous Collection Protocol without Trusted Third Party[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1442-1449. doi: 10.11999/JEIT180595
Citation: Zhiping ZHOU, Zhicong LI. Data Anonymous Collection Protocol without Trusted Third Party[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1442-1449. doi: 10.11999/JEIT180595

Data Anonymous Collection Protocol without Trusted Third Party

doi: 10.11999/JEIT180595
  • Received Date: 2018-06-19
  • Rev Recd Date: 2019-03-04
  • Available Online: 2019-03-25
  • Publish Date: 2019-06-01
  • Semi-honest data collectors may cause privacy leaks during the collection and use of Sensitive Attribute (SA) data. In view of the problem, real-time data leaders are added in the traditional model and a privacy-protected data collection protocol based on the improved model is proposed. Without the assumption of trusted third party, the protocol ensures that data collectors maximization data utility can only be established on the basis of K-anonymized data. Data owners participates in the protocol flow in a distributed and collaborative manner to achieve the transmission of SA after the Quasi-Identifier (QI) is anonymized. This reduces the probability that the data collector uses the QI to associate SA values and weakens the risk of privacy leakage caused by internal identity disclosure. It divides the coded value of the SA into two shares of a random anchor point and a compensation distance through the tree coding structure and the members of the equivalent class formed by K-anonymity elect two data leaders to aggregate and forward the two shares respectively, which releases the association between unique network identification and SA values and prevents leakage of privacy caused by external identification effectively. Formal rules are established that meet the characteristics of the protocol and analyze the protocol to prove that the protocol meets privacy protection requirements.
  • loading
  • 曹珍富, 董晓蕾, 周俊, 等. 大数据安全与隐私保护研究进展[J]. 计算机研究与发展, 2016, 53(10): 2137–2151. doi: 10.7544/issn1000-1239.2016.20160684

    CAO Zhenfu, DONG Xiaolei, ZHOU Jun, et al. Research advances on big data security and privacy preserving[J]. Journal of Computer Research and Development, 2016, 53(10): 2137–2151. doi: 10.7544/issn1000-1239.2016.20160684
    包国华, 王生玉, 李运发. 云计算中基于隐私感知的数据安全保护方法研究[J]. 信息网络安全, 2017(1): 84–89. doi: 10.3969/j.issn.1671-1122.2017.01.013

    BAO Guohua, WANG Shengyu, and LI Yunfa. Research on data security protection method based on privacy awareness in cloud computing[J]. Netinfo Security, 2017(1): 84–89. doi: 10.3969/j.issn.1671-1122.2017.01.013
    IMRUL K and ADRIANA I. Privacy and security in online social networks: A survey[J]. Online Social Networks and Media, 2017, 4(3): 1–21. doi: 10.1109/ICME.2011.6012166
    SWEENEY L. k-Anonymity: A model for protecting privacy[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2002, 10(5): 557–570. doi: 10.1142/S0218488502001648
    MACHANAVAJJHALA A, GEHRKE J, KIFER D, et al. l-Diversity: Privacy beyond k-anonymity[C]. Proceedings of the 22nd International Conference on Data Engineering, Atlanta, USA, 2006: 24.
    LI Ninghui, LI Tiancheng, and VENKATASUBRAMANIAN S. t-Closeness: Privacy beyond k-anonymity and l-diversity[C]. Proceedings of the 23rd International Conference on Data Engineering, Istanbul, Turkey, 2007: 106–115.
    DWORK C, KENTHAPADI K, MCSHERRY F, et al. Our data, ourselves: Privacy via distributed noise generation[C]. Proceedings of the 24th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Petersburg, Russia, 2006: 486–503.
    DWORK C, NAOR M, PITASSI T, et al. Differential privacy under continual observation[C]. Proceedings of the 42nd ACM symposium on Theory of Computing, Cambridge, Massachusetts, USA, 2010: 715–724.
    CLARKE A and STEELE R. A smartphone-based system for population-scale anonymized public health data collection and Intervention[C]. Proceedings of the 47th Hawaii International Conference on System Sciences, Waikoloa, USA, 2014: 2908–2917.
    ZHONG Sheng, YANG Zhiqiang, and CHEN Tingting. k-anonymous data collection[J]. Information Sciences, 2009, 179(17): 2948–2963. doi: 10.1016/j.ins.2009.05.004
    XUE Mingqiang, PAPADIMITRIOU P, RAÏSSI C, et al. Distributed privacy preserving data collection[C]. Proceedings of the 16th International Conference on Database Systems for Advanced Applications, Hongkong, China, 2011: 93–107.
    LI Hongtao, GUO Feng, ZHANG Wenyin, et al. (a, k)-Anonymous scheme for privacy-preserving data collection in IoT-based healthcare services systems[J]. Journal of Medical Systems, 2018, 42(3): 56. doi: 10.1007/s10916-018-0896-7
    刘琴, 刘旭辉, 胡柏霜, 等. 个人健康记录云管理系统中支持用户撤销的细粒度访问控制[J]. 电子与信息学报, 2017, 39(5): 1206–1212. doi: 10.11999/JEIT160621

    LIU Qin, LIU Xuhui, HU Baishuang, et al. Fine-grained access control with user revocation in cloud-based personal health record system[J]. Journal of Electronics &Information Technology, 2017, 39(5): 1206–1212. doi: 10.11999/JEIT160621
    LUO Entao, BHUIYAN M Z A, WANG Guojun, et al. Privacy protector: Privacy-protected patient data collection in IoT-based healthcare systems[J]. IEEE Communications Magazine, 2018, 56(2): 163–168. doi: 10.1109/MCOM.2018.1700364
    龚奇源, 杨明, 罗军舟. 面向关系-事务数据的数据匿名方法[J]. 软件学报, 2016, 27(11): 2828–2842. doi: 10.13328/j.cnki.jos.005099

    GONG Qiyuan, YANG Ming, and LUO Junzhou. Data anonymization approach for microdata with relational and transaction attributes[J]. Journal of Software, 2016, 27(11): 2828–2842. doi: 10.13328/j.cnki.jos.005099
    KIM S and CHUNG Y D. An anonymization protocol for continuous and dynamic privacy-preserving data collection[J]. Future Generation Computer Systems, 2019, 93: 1065–1073. doi: 10.1016/j.future.2017.09.009
    VILLADANGOS J, CORDOBA A, FARINA F, et al. Efficient leader election in complete networks[C]. Proceedings of the 13th Euromicro Conference on Parallel, Distributed and Network-Based Processing, Lugano, Switzerland, 2005: 136–143.
    罗恩韬, 王国军. 移动社交网络中一种朋友发现的隐私安全保护策略[J]. 电子与信息学报, 2016, 38(9): 2165–2172. doi: 10.11999/JEIT151479

    LUO Entao and WANG Guojun. A novel friends matching privacy preserving strategy in mobile social networks[J]. Journal of Electronics &Information Technology, 2016, 38(9): 2165–2172. doi: 10.11999/JEIT151479
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (1924) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return