Advanced Search
Volume 41 Issue 5
Apr.  2019
Turn off MathJax
Article Contents
Guangwu CHEN, Xiaobo LIU, Di WANG, Shede LIU. Denoising of MEMS Gyroscope Based on Improved Wavelet Transform[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1025-1031. doi: 10.11999/JEIT180590
Citation: Guangwu CHEN, Xiaobo LIU, Di WANG, Shede LIU. Denoising of MEMS Gyroscope Based on Improved Wavelet Transform[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1025-1031. doi: 10.11999/JEIT180590

Denoising of MEMS Gyroscope Based on Improved Wavelet Transform

doi: 10.11999/JEIT180590
Funds:  The National Natural Science Foundation of China (61863024, 71761023), The Gansu Basic Research Innovation Group Program (1606RJIA327), The Gansu Natural Science Foundation (18JR3RA107 1610RJYA034), Granted by Gansu Provincial Higher Education Research Project (2018C-11), The Gansu Province Science and Technology Plan Funding (18CX3ZA004)
  • Received Date: 2018-06-13
  • Rev Recd Date: 2018-12-25
  • Available Online: 2019-01-04
  • Publish Date: 2019-05-01
  • In order to improve the measurement accuracy of Micro Electro Mechanical Systems (MEMS) gyroscopes, the influence of measurement noise on them is suppressed. The error characteristics of a certain type of MEMS gyroscope are analyzed. A strong tracking self-feedback model based on Recursive Least Square (RLS) multiple wavelet decomposition reconstruction is proposed to establish a new soft threshold function. Since the model processed data has partial singular values, an improved median filtering algorithm is proposed. For the problem of gyro zero-bias noise, a zero-bias stability suppression algorithm is proposed. In this paper, the algorithm model is described in detail, and the experimental data of the train attitude measurement system in a project research are applied to the algorithm model. The test experiments are divided into static and dynamic groups. The results show that the algorithm reduces the noise in the signal, suppresses effectively the random drift of the MEMS gyroscope and improves the accuracy of the attitude calculation. The feasibility and effectiveness of this method are affirmed to remove the signal noise of the gyroscope output and improve the accuracy of the use.

  • loading
  • ZHANG Yanshun, PENG Chuang, MOU Dong, et al. An adaptive filtering approach based on the dynamic variance model for reducing MEMS gyroscope random error[J]. Sensors, 2018, 18(1): 3943–3957. doi: 10.3390/s18113943
    XING Haifeng, CHEN Zhiyong, YANG Haotian, et al. Self-alignment MEMS IMU method based on the rotation modulation technique on a swing base[J]. Sensors, 2018, 18(4): 1178–1200. doi: 10.3390/s18041178
    WANG Wei and CHEN Xiyuan. Application of improved 5th-cubature kalman filter in initial strapdown inertial navigation system alignment for large. misalignment angles[J]. Sensors, 2018, 18(2): 659–676. doi: 10.3390/s18020659
    LI Tao, YUAN Gannan, LI wang, et al. Particle filter with novel nonlinear error model for miniature gyroscope based measurement while drilling navigation[J]. Sensors, 2016, 16(3): 371–385. doi: 10.3390/s16030371
    GUO Zhanshe, FU Peng, LIU feng, et al. Design and FEM simulation for a novel resonant silicon MEMS gyroscope with temperature compensation function[J]. Microsyste Technologies, 2018, 24(3): 1453–1459. doi: 10.1007/s00542-017-3524-4
    JON O, AIFONSO B, IBAN L, et al. Evaluation of experimental GNSS and 10-DOF MEMS IMU measurements for train positioning[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 6(5): 1–11. doi: 10.1109/TIM.2018.2838799
    XIAO Dingbang, XIA Dewei, LI Qingsong, et al. A temperature self-calibrating torsional accelerometer with fully differential configurationand integrated reference capacitor[J]. IEEE Sensors, 2015, 6(7): 1–4. doi: 10.1109/ICSENS.2015.7370428
    IGOR P, BROCK B, CAREY M, et al. Towards self-navigating cars using MEMS IMU: Challengesand opportunities[C]. International Symposium on Inertial Sensors and Systems, Moltrasio, Italy, 2018: 1–4.
    金靖, 王峥, 张忠钢, 等. 基于多元线性回归模型的光纤陀螺温度误差建模[J]. 宇航学报, 2008, 29(6): 1921–1916. doi: 10.387/s100-1328

    JIN Jing, WANG Zheng, ZHANG Zhonggang, et al. Temperature errors modeling for fiber optic gyroscope using multiple linear regression models[J]. Journal of Aerospace, 2008, 29(6): 1921–1916. doi: 10.387/s100-1328
    DING Jicheng, ZHANG Qian, HUANG Weiquan, et al. Laser gyroscope temperature compensat-i on using modified RBFNN[J]. Sensors, 2014, 14(10): 18711–18727. doi: 10.3390/s141018711
    YUAN Guangmin, YUAN Weizheng, LIANG Xue, et al. Dynamic performance comparison of two kalman filters for rate signal direct modeling and differencing modeling for combining a MEMS gyroscope array to improve accuracy[J]. Sensors, 2015, 15(11): 27590–27610. doi: 10.3390/s151127590
    ZHA Feng, XU Jiangning, LI JingshuHe, et al. IUKF neural network modeling for FOG temperature drift[J]. Beijing Institute of Aerospace Information, 2013, 24(5): 838–844. doi: 10.1109/JSEE.2013.00097
    ZHI S, JACQUES G, MICHAEL J, et al. Low cost two dimension navigation using an augmented Kalman filter/Fast Orthogonal Search module for the integration of reduced inertial sensor system and global positioning[J]. Elsevier, 2011, 19(6): 1111–1132. doi: 10.1016/j.trc.2011.01.001
    REN Honglian and PETER K. Investiga-tion of attitude tracking using an integrated inertial and magnetic navigation system for hand-held surgical instruments[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(2): 210–217. doi: 10.1109/TMECH.2010.2095504
    CHEN Xiyuan, XU Yuan, LI Qinghua, et al. Application of adaptive extended kalman smoothing on INS/WSN integration system for mobile robot indoors[J]. Mathematical Problems in Engineering, 2013, 10(10): 1–8. doi: 10.1155/2013/130508
    CHU Hairong, SUN Tingting, ZHANG Baiqiang, et al. Rapid transfer alignment of MEMS SINS based on adaptive incremental kalman filter[J]. Sensors, 2017, 17(1): 152–166. doi: 10.3390/s17010152
    FENG Yibo, LI Xisheng, and ZHANG Xiaojuan. An adaptive compensation algorithm for temperature drift of micro-electro-mechanical systems gyroscopes using a strong tracking kalman filter[J]. Sensors, 2015, 15(5): 11222–11238. doi: 10.3390/s150511222
    BIRSEL A and BILLUR B. Leg motion classification with artificial neural networks using wavelet-based features of gyroscope signals[J]. Sensors, 2011, 11(2): 1721–1743. doi: 10.3390/s110201721
    李杰, 曲芸, 刘俊, 等. 模平方小波阈值在MEMS陀螺仪在信号降噪总的应用[J]. 中国惯性术学报, 2008, 16(4): 236–239. doi: 10.13695/j.cnki.12-1222/o3.2008.02.03

    LI Jie, QU Yun, LIU Jun, et al. Application of modular square wavelet threshold for denoising MEMS-based gyros signal[J]. Journal of Chinese Inertial Technology, 2008, 16(4): 236–239. doi: 10.13695/j.cnki.12-1222/o3.2008.02.03
    刘菲, 任章, 李青东. 基于小波方差的MEMS IMU随机误差模型间接估计方法[J]. 中国惯性技术学报, 2016, 24(1): 77–82. doi: 10.13695/j.cnki.12-1222/o3.2016.01.014

    LIU Fei, REN Zhang, and LI Qingdong. Indirect estimation method for random error models of MEMS IMU based on wavelet variance[J]. Journal of Chinese Inertial Technology, 2016, 24(1): 77–82. doi: 10.13695/j.cnki.12-1222/o3.2016.01.014
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article Metrics

    Article views (2847) PDF downloads(100) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return