Citation: | Li ZHOU, Xinming ZHANG, Weizhen GUO, Yan WANG. A Direct Fusion Algorithm for Multiple Pieces of Evidence Based on Improved Conflict Measure[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1145-1151. doi: 10.11999/JEIT180578 |
In the light of the disadvantages that Jousselme’s evidential distance function can not describe the local conflicting information of evidence well and can not measure the conflict of high conflicting evidence accurately, an improved Jousselme’s evidential distance function is proposed. In the new function, Jousselme’s evidence distance function is improved by using the non-coincidence degree, which can better describe the local conflict of evidence, so that the conflict measure result of evidence varies proportionally with the value of the non-coincidence degree and the scope of its change. Secondly, an improved fusion conflict measure function is constructed based on the conflict coefficient and the new improved Jousselme’s evidential distance function. On this basis, the weight coefficient formula of focal element is improved, and the local multi-dimensional conflicting information is assigned proportionately. Theoretical and application analysis results show that the new algorithm is a kind of evidence fusion algorithm with wide applicability and good anti-jamming performance.
SHAFER G. A mathematical theory of evidence turns 40[J]. International Journal of Approximate Reasoning, 2016, 79: 7–25. doi: 10.1016/j.ijar.2016.07.009
|
HAN Deqiang, DEZERT J, and YANG Yi. Belief interval-based distance measures in the theory of belief functions[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2016, 99: 1–18. doi: 10.1109/TSMC.2016.2628879
|
韩德强, 杨艺, 韩崇昭. DS证据理论研究进展及相关问题探讨[J]. 控制与决策, 2014, 29(1): 1–11. doi: 10.13195/j.kzyjc.2013.0517
HAN Deqiang, YANG Yi, and HAN Chongzhao. Advances in DS evidence theory and related discussions[J]. Control and Decision, 2014, 29(1): 1–11. doi: 10.13195/j.kzyjc.2013.0517
|
DESTERCKE S and BURGER T. Toward an axiomatic definition of conflict between belief functions[J]. IEEE Transactions on Cybernetics, 2013, 43(2): 585–596. doi: 10.1109/TSMCB.2012.2212703
|
ZADEH L A. A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination[J]. AI magazine, 1986, 7(2): 85–90. doi: 10.1142/9789814261302-0033
|
SONG Yafei, WANG Xiaodan, LEI Lei, et al. Credibility decay model in temporal evidence combination[J]. Information Processing Letters, 2015, 115(2): 248–252. doi: 10.3969/j.issn.1001-506X.2015.07.04
|
BI Wenhao, ZHANG An, and YUAN Yuan. Combination method of conflict evidences based on evidence similarity[J]. Journal of Systems Engineering and Electronics, 2017, 28(3): 503–513. doi: 10.21629/JSEE.2017.03.10
|
QIAN Jin, GUO Xingfeng, and DENG Yong. A novel method for combining conflicting evidences based on information entropy[J]. Applied Intelligence, 2017, 46(4): 1–13. doi: 10.1007/s10489-016-0875-y
|
包甜甜, 谢新连, 魏照坤. 新的证据冲突度量算法[J]. 控制理论与应用, 2017, 34(1): 41–48. doi: 10.7641/CTA.2017.60275
BAO Tiantian, XIE Xinlian, and WEI Zhaokun. Novel approach for measuring the conflict between evidence[J]. Control Theory &Applications, 2017, 34(1): 41–48. doi: 10.7641/CTA.2017.60275
|
邓勇, 施文康, 朱振福. 一种有效处理冲突证据的组合方法[J]. 红外与毫米波学报, 2004, 23(1): 27–32. doi: 10.3321/j.issn:1001-9014.2004.01.006
DENG Yong, SHI Wenkang, and ZHU Zhenfu. Efficient combination approach of conflict evidence[J]. Journal of Infrared and Millimeter Wave, 2004, 23(1): 27–32. doi: 10.3321/j.issn:1001-9014.2004.01.006
|
宋亚飞, 王晓丹, 雷蕾, 等. 基于信任度和虚假度的证据组合方法[J]. 通信学报, 2015, 36(5): 98–103. doi: 10.11959/j.issn.1000-436x.2015104
SONG Yafei, WANG Xiaodan, LEI Lei, et al. Evidence combination based on the degree of credibility and falsity[J]. Journal on Communications, 2015, 36(5): 98–103. doi: 10.11959/j.issn.1000-436x.2015104
|
LIU Zhigang, HAN Zhiwei, ZHANG Yang, et al. Multiwavalet packet entropy and its application in transmission line fault recognition and classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(11): 2043–2052. doi: 10.1109/TNNLS.2014.2303086
|
DENG Yong. Generalized evidence theory[J]. Applied Intelligence, 2015, 43(3): 530–543. doi: 10.1007/s10489-015-0661-2
|
郭强, 何友, 李新德. 一种快速DSmT-DS近似推理融合方法[J]. 电子与信息学报, 2015, 37(9): 2040–2046. doi: 10.11999/JEIT150086
GUO Qiang, HE You, and LI Xinde. Fast DSmT-DS approximate reasoning method[J]. Journal of Electronics &Information Technology, 2015, 37(9): 2040–2046. doi: 10.11999/JEIT150086
|
周莉, 郭伟震, 曹珊珊. 改进的局部冲突信息再分配算法[J]. 光电子激光, 2018, 29(4): 396–404. doi: 10.16136/j.joel.2018.04.0205
ZHOU Li, GUO Weizhen, and CAO Shanshan. An improved local conflict information redistribution algorithm[J]. Journal of Optoelectronics Laser, 2018, 29(4): 396–404. doi: 10.16136/j.joel.2018.04.0205
|
曹洁, 郭雷雷. 一种基于局部冲突分配的证据组合规则[J]. 计算机应用研究, 2013, 30(7): 2033–2035. doi: 10.3969/j.issn.1001-3695.2013.07.029
CAO Jie and GUO Leilei. Evidence combination rule based on local conflict distribution strategy[J]. Application Research of Computers, 2013, 30(7): 2033–2035. doi: 10.3969/j.issn.1001-3695.2013.07.029
|
彭颖, 胡增辉, 沈怀荣. 一种修正证据距离[J]. 电子与信息学报, 2013, 35(7): 1624–1629. doi: 10.3724/SP.J.1146.2012.01680
PENG Ying, HU Zenghui, and SHEN Huairong. A modified distance of evidence[J]. Journal of Electronics &Information Technology, 2013, 35(7): 1624–1629. doi: 10.3724/SP.J.1146.2012.01680
|
毛艺帆, 张多林, 王路. 基于重合度的证据冲突度量方法[J]. 控制与决策, 2017, 32(2): 293–298. doi: 10.13195/j.kzyjc.2016.1394
MAO Yifan, ZHANG Duolin, and WANG Lu. Measurement of evidence conflict based on overlapping degree[J]. Control and Decision, 2017, 32(2): 293–298. doi: 10.13195/j.kzyjc.2016.1394
|
汤潮, 蒋雯, 陈运东, 等. 新不确定度量下的冲突证据融[J]. 系统工程理论与实践, 2015, 35(9): 2394–2400. doi: 10.12011/1000-6788(2015)9-2394
TANG Chao, JIANG Wen, CHEN Yundong, et al. Conflicting evidence combination based on a new measure method of uncertainty[J]. Systems Engineering -Theory &Practice, 2015, 35(9): 2394–2400. doi: 10.12011/1000-6788(2015)9-2394
|
BURGER T. Geometric views on conflicting mass functions: From distances to angles[J]. International Journal of Approximate Reasoning, 2016, 70: 36–50. doi: 10.1016/j.ijar.2015.12.006
|