Advanced Search
Volume 41 Issue 5
Apr.  2019
Turn off MathJax
Article Contents
Kai WANG, Shuxin LIU, Hongchang CHEN, Xing LI. A New Link Prediction Method for Complex Networks Based on Resources Carrying Capacity Between Nodes[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1225-1234. doi: 10.11999/JEIT180553
Citation: Kai WANG, Shuxin LIU, Hongchang CHEN, Xing LI. A New Link Prediction Method for Complex Networks Based on Resources Carrying Capacity Between Nodes[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1225-1234. doi: 10.11999/JEIT180553

A New Link Prediction Method for Complex Networks Based on Resources Carrying Capacity Between Nodes

doi: 10.11999/JEIT180553
Funds:  The National Natural Science Foundation of China (61521003, 61803384)
  • Received Date: 2018-06-05
  • Rev Recd Date: 2019-01-16
  • Available Online: 2019-01-30
  • Publish Date: 2019-05-01
  • Link prediction aims to discover the unknown or missing links of complex networks, which plays an important role in practical application. The similarity-based link prediction methods attract a lot of attention due to their briefness and effectiveness. However, most of similarity indices ignore the influence of resource carrying capacity between nodes when calculating the likelihood that a link exists between two endpoints. Because of the problem, a new link prediction method based on resources carrying capacity between nodes is proposed. Firstly, the resource carrying capacity is proposed to quantify the capability of resource carrying between nodes. Then, based on the resource carrying capacity, a new link prediction method is proposed by analyzing the impact of node connectivity. The experimental results of nine real networks show that compared with other link prediction methods, the proposed method can achieve higher prediction accuracy under three standard metrics.
  • loading
  • SHANMUKHAPPA T, HO I W H, and TSE C K. Spatial analysis of bus transport networks using network theory[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 502: 295–314. doi: 10.1016/j.physa.2018.02.111
    CUI Ying, CAI Meng, DAI Yang, et al. A hybrid network-based method for the detection of disease-related genes[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 492: 389–394. doi: 10.1016/j.physa.2017.10.026
    VINCENOT C E. How new concepts become universal scientific approaches: insights from citation network analysis of agent-based complex systems science[J]. Proceedings of the Royal Society B: Biological Sciences, 2018, 285(1874): 20172360. doi: 10.1098/rspb.2017.2360
    CHEN Zhenhao, WU Jiajing, XIA Yongxiang, et al. Robustness of interdependent power grids and communication networks: A complex network perspective[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(1): 115–119. doi: 10.1109/TCSII.2017.2705758
    KIM J and HASTAK M. Social network analysis: characteristics of online social networks after a disaster[J]. International Journal of Information Management, 2018, 38(1): 86–96. doi: 10.1016/j.ijinfomgt.2017.08.003
    VON MERING C, JENSEN L J, SNEL B, et al. STRING: known and predicted protein-protein associations, integrated and transferred across organisms[J]. Nucleic Acids Research, 2005, 33(1): D433–D437. doi: 10.1093/nar/gki005
    SCELLATO S, NOULAS A, and MASCOLO C. Exploiting place features in link prediction on location-based social networks[C]. Proceedings of the 17th ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Diego, California, USA, 2011: 1046–1054. doi: 10.1145/2020408.2020575.
    HOLLAND P W, LASKEY K B, and LEINHARDT S. Stochastic blockmodels: first steps[J]. Social Networks, 1983, 5(2): 109–137. doi: 10.1016/0378-8733(83)90021-7
    SANZ-CRUZADO J, PEPA S M, and CASTELLS P. Structural novelty and diversity in link prediction[C]. Companion of the the Web Conference, 2018, Lyon, France, 2018: 1347–1351.
    LORRAIN F and WHITE H C. Structural equivalence of individuals in social networks[J]. The Journal of Mathematical Sociology, 1971, 1(1): 49–80. doi: 10.1080/0022250X.1971.9989788
    ZHOU Tao, LÜ Linyuan, and ZHANG Yicheng. Predicting missing links via local information[J]. The European Physical Journal B, 2009, 71(4): 623–630. doi: 10.1140/epjb/e2009-00335-8
    ADAMIC L A and ADAR E. Friends and neighbors on the web[J]. Social Networks, 2003, 25(3): 211–230. doi: 10.1016/S0378-8733(03)00009-1
    CANNISTRACI C V, ALANIS-LOBATO G, and RAVASI T. From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks[J]. Scientific Reports, 2013(3): 1613. doi: 10.1038/srep01613
    LIU Shuxin, JI Xinsheng, LIU Caixia, et al. Extended resource allocation index for link prediction of complex network[J]. Physica A: Statistical Mechanics and Its Applications, 2017, 479: 174–183. doi: 10.1016/j.physa.2017.02.078
    KATZ L. A new status index derived from sociometric analysis[J]. Psychometrika, 1953, 18(1): 39–43. doi: 10.1007/BF02289026
    KLEIN D J and RANDIĆ M. Resistance distance[J]. Journal of Mathematical Chemistry, 1993, 12(1): 81–95. doi: 10.1007/BF01164627
    FOUSS F, PIROTTE A, RENDERS J M, et al. Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(3): 355–369. doi: 10.1109/tkde.2007.46
    LÜ Linyuan, JIN Cihang, and ZHOU Tao. Similarity index based on local paths for link prediction of complex networks[J]. Physical Review E, 2009, 80(4): 046122. doi: 10.1103/PhysRevE.80.046122
    YANG Yujie, ZHANG Jianhua, ZHU Xuzhen, et al. Link prediction via significant influence[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 492: 1523–1530. doi: 10.1016/j.physa.2017.11.078
    刘树新, 季新生, 刘彩霞, 等. 一种信息传播促进网络增长的网络演化模型[J]. 物理学报, 2014, 63(15): 158902. doi: 10.7498/aps.63.158902

    LIU Shuxin, JI Xinsheng, LIU Caixia, et al. A complex network evolution model for network growth promoted by information transmission[J]. Acta Physica Sinica, 2014, 63(15): 158902. doi: 10.7498/aps.63.158902
    WANG Xingyuan, ZHOU Wenjie, LI Rui, et al. Improving robustness of interdependent networks by a new coupling strategy[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 492: 1075–1080. doi: 10.1016/j.physa.2017.11.037
    WANG Xingyuan, CAO Jianye, LI Rui, et al. A preferential attachment strategy for connectivity link addition strategy in improving the robustness of interdependent networks[J]. Physica A: Statistical Mechanics and Its Applications, 2017, 483: 412–422. doi: 10.1016/j.physa.2017.04.128
    WANG Xingyuan, CAO Jianye, and QIN Xiaomeng. Study of robustness in functionally identical coupled networks against cascading failures[J]. PLoS One, 2016, 11(8): e0160545. doi: 10.1371/journal.pone.0160545
    DEWHURST D R, DANFORTH C M, and DODDS P S. Continuum rich-get-richer processes: mean field analysis with an application to firm size[J]. Physical Review E, 2018, 97(6): 062317. doi: 10.1103/PhysRevE.97.062317
    ZENG Guoping and ZENG E. On the three-way equivalence of AUC in credit scoring with tied scores[J]. Communications in Statistics-Theory and Methods, 2017, 46(17): 1–16. doi: 10.1080/03610926.2018.1435814
    WU Zhihao, LIN Youfang, ZHAO Yiji, et al. Improving local clustering based top-L link prediction methods via asymmetric link clustering information[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 492: 1859–1874. doi: 10.1016/j.physa.2017.11.103
    ZENG Xiangxiang, LIU Li, LÜ Linyuan, et al. Prediction of potential disease-associated microRNAs using structural perturbation method[J]. Bioinformatics, 2018, 34(14): 2425–2432. doi: 10.1093/bioinformatics/bty112
    GOPAL S. The evolving social geography of blogs[M]. MILLER H J. Societies and Cities in the Age of Instant Access. Dordrecht, Springer, 2007: 275–293. doi: 10.1007/1-4020-5427-0_18.
    MICHALSKI R, PALUS S, and KAZIENKO P. Matching organizational structure and social network extracted from email communication[C]. Proceedings of the 14th International Conference on Business Information Systems, Poznań, Poland, 2011.
    ULANOWICZ R E and DEANGELIS D L. Network analysis of trophic dynamics in south Florida ecosystems[J]. US Geological Survey Program on the South Florida Ecosystem, 2005, 114: 45–47. (未找到本条文献信息, 请核对
    WATTS D J and STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684): 440–442. doi: 10.1038/30918
    MICHALSKI R, PALUS S, and KAZIENKO P. Matching organizational structure and social network extracted from email communication[C]. Proceedings of the 14th International Conference on Business Information Systems, Poznań, Poland, 2011: 197–206. doi: 10.1007/978-3-642-21863-7_17.
    ADAMIC L A and GLANCE N. The political blogosphere and the 2004 U.S. election: divided they blog[C]. Proceedings of the 3rd International Workshop on Link Discovery, Chicago, USA, 2005: 36–43. doi: 10.1145/1134271.1134277.
    LÜ Linyuan, PAN Liming, ZHOU Tao, et al. Toward link predictability of complex networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(8): 2325–2330. doi: 10.1073/pnas.1424644112
    EWING R M, CHU P, ELISMA F, et al. Large-scale mapping of human protein-protein interactions by mass spectrometry[J]. Molecular Systems Biology, 2007, 3: 89. doi: 10.1038/msb4100134
    OPSAHL T and PANZARASA P. Clustering in weighted networks[J]. Social Networks, 2009, 31(2): 155–163. doi: 10.1016/j.socnet.2009.02.002
    刘树新, 季新生, 刘彩霞, 等. 局部拓扑信息耦合促进网络演化[J]. 电子与信息学报, 2016, 38(9): 2180–2187. doi: 10.11999/JEIT151338

    LIU Shuxin, JI Xinsheng, LIU Caixia, et al. Information coupling of local topology promoting the network evolution[J]. Journal of Electronics &Information Technology, 2016, 38(9): 2180–2187. doi: 10.11999/JEIT151338
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (1088) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return